A machine learning approach to distinguish between knees without and with osteoarthritis using MRI-based radiomic features from tibial bone

Objectives Our aim was to assess the ability of semi-automatically extracted magnetic resonance imaging (MRI)–based radiomic features from tibial subchondral bone to distinguish between knees without and with osteoarthritis. Methods The right knees of 665 females from the population-based Rotterdam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2021-11, Vol.31 (11), p.8513-8521
Hauptverfasser: Hirvasniemi, Jukka, Klein, Stefan, Bierma-Zeinstra, Sita, Vernooij, Meike W., Schiphof, Dieuwke, Oei, Edwin H. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8521
container_issue 11
container_start_page 8513
container_title European radiology
container_volume 31
creator Hirvasniemi, Jukka
Klein, Stefan
Bierma-Zeinstra, Sita
Vernooij, Meike W.
Schiphof, Dieuwke
Oei, Edwin H. G.
description Objectives Our aim was to assess the ability of semi-automatically extracted magnetic resonance imaging (MRI)–based radiomic features from tibial subchondral bone to distinguish between knees without and with osteoarthritis. Methods The right knees of 665 females from the population-based Rotterdam Study scanned with 1.5T MRI were analyzed. A fast imaging employing steady-state acquisition sequence was used for the quantitative bone analyses. Tibial bone was segmented using a method that combines multi-atlas and appearance models. Radiomic features related to the shape and texture were calculated from six volumes of interests (VOIs) in the proximal tibia. Machine learning–based Elastic Net models with 10-fold cross-validation were used to distinguish between knees without and with MRI Osteoarthritis Knee Score (MOAKS)–based tibiofemoral osteoarthritis. Performance of the covariate (age and body mass index), image features, and combined covariate + image features models were assessed using the area under the receiver operating characteristic curve (ROC AUC). Results Of 665 analyzed knees, 76 (11.4%) had osteoarthritis. An ROC AUC of 0.68 (95% confidence interval (CI): 0.60–0.75) was obtained using the covariate model. The image features model yielded an ROC AUC of 0.80 (CI: 0.73–0.87). The model that combined image features from all VOIs and covariates yielded an ROC AUC of 0.80 (CI: 0.73–0.87). Conclusion Our results suggest that radiomic features are useful imaging biomarkers of subchondral bone for the diagnosis of osteoarthritis. An advantage of assessing bone on MRI instead of on radiographs is that other tissues can be assessed simultaneously. Key Points • Subchondral bone plays a role in the osteoarthritis disease processes. • MRI radiomics is a potential method for quantifying changes in subchondral bone. • Semi-automatically extracted radiomic features of tibia differ between subjects without and with osteoarthritis.
doi_str_mv 10.1007/s00330-021-07951-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8523397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516841482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-16ffb7ebe19ff016b778f83aac3b1139388dec8fba7b6e8491eaa7f558bb91fe3</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonR2Gv1D7gwJG7coDAwF9iYNI0fTWpMjK4JzBzuUGfgCkwbf4N_Wtpb68fCFeSc5zxw8iL0lNGXjFL5qlDKOSW0Y4RK3TPS30MbJnhHGFXiPtpQzRWRWosj9KiUC0qpZkI-REecKyWEpBv04wQvdphCBDyDzTHEHbb7fU6tiGvCYyi11dZQJuygXgFE_DUCFHwV6pTWim0cb-44lQrJ5jrlUEPBa7l2ffh0RpwtMOJsx5CWMGAPtq65GXxOC67BBTtjlyI8Rg-8nQs8uT2P0Ze3bz6fvifnH9-dnZ6ck0FIUQnbeu8kOGDae8q2TkrlFbd24I4x3nZWIwzKOyvdFpTQDKyVvu-Vc5p54Mfo9cG7X90C4wCxZjubfQ6Lzd9NssH83YlhMrt0aVTfca5lE7y4FeT0bYVSzRLKAPNsI6S1mK5nWyWYUF1Dn_-DXqQ1x7Zeo1SnNG-pNKo7UENOpWTwd59h1FxnbQ5Zm5a1ucna9G3o2Z9r3I38CrcB_ACU1oo7yL_f_o_2J_hNuSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582893000</pqid></control><display><type>article</type><title>A machine learning approach to distinguish between knees without and with osteoarthritis using MRI-based radiomic features from tibial bone</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hirvasniemi, Jukka ; Klein, Stefan ; Bierma-Zeinstra, Sita ; Vernooij, Meike W. ; Schiphof, Dieuwke ; Oei, Edwin H. G.</creator><creatorcontrib>Hirvasniemi, Jukka ; Klein, Stefan ; Bierma-Zeinstra, Sita ; Vernooij, Meike W. ; Schiphof, Dieuwke ; Oei, Edwin H. G.</creatorcontrib><description>Objectives Our aim was to assess the ability of semi-automatically extracted magnetic resonance imaging (MRI)–based radiomic features from tibial subchondral bone to distinguish between knees without and with osteoarthritis. Methods The right knees of 665 females from the population-based Rotterdam Study scanned with 1.5T MRI were analyzed. A fast imaging employing steady-state acquisition sequence was used for the quantitative bone analyses. Tibial bone was segmented using a method that combines multi-atlas and appearance models. Radiomic features related to the shape and texture were calculated from six volumes of interests (VOIs) in the proximal tibia. Machine learning–based Elastic Net models with 10-fold cross-validation were used to distinguish between knees without and with MRI Osteoarthritis Knee Score (MOAKS)–based tibiofemoral osteoarthritis. Performance of the covariate (age and body mass index), image features, and combined covariate + image features models were assessed using the area under the receiver operating characteristic curve (ROC AUC). Results Of 665 analyzed knees, 76 (11.4%) had osteoarthritis. An ROC AUC of 0.68 (95% confidence interval (CI): 0.60–0.75) was obtained using the covariate model. The image features model yielded an ROC AUC of 0.80 (CI: 0.73–0.87). The model that combined image features from all VOIs and covariates yielded an ROC AUC of 0.80 (CI: 0.73–0.87). Conclusion Our results suggest that radiomic features are useful imaging biomarkers of subchondral bone for the diagnosis of osteoarthritis. An advantage of assessing bone on MRI instead of on radiographs is that other tissues can be assessed simultaneously. Key Points • Subchondral bone plays a role in the osteoarthritis disease processes. • MRI radiomics is a potential method for quantifying changes in subchondral bone. • Semi-automatically extracted radiomic features of tibia differ between subjects without and with osteoarthritis.</description><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-021-07951-5</identifier><identifier>PMID: 33884470</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Arthritis ; Biomarkers ; Biomedical materials ; Body mass ; Body mass index ; Body size ; Bone imaging ; Confidence intervals ; Diagnostic Radiology ; Feature extraction ; Female ; Humans ; Imaging ; Internal Medicine ; Interventional Radiology ; Knee ; Knee Joint ; Learning algorithms ; Machine Learning ; Magnetic Resonance Imaging ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Musculoskeletal ; Neuroradiology ; Osteoarthritis ; Osteoarthritis, Knee - diagnostic imaging ; Population studies ; Radiology ; Radiomics ; ROC Curve ; Subchondral bone ; Tibia ; Tibia - diagnostic imaging ; Ultrasound</subject><ispartof>European radiology, 2021-11, Vol.31 (11), p.8513-8521</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-16ffb7ebe19ff016b778f83aac3b1139388dec8fba7b6e8491eaa7f558bb91fe3</citedby><cites>FETCH-LOGICAL-c474t-16ffb7ebe19ff016b778f83aac3b1139388dec8fba7b6e8491eaa7f558bb91fe3</cites><orcidid>0000-0003-3727-3427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-021-07951-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-021-07951-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33884470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirvasniemi, Jukka</creatorcontrib><creatorcontrib>Klein, Stefan</creatorcontrib><creatorcontrib>Bierma-Zeinstra, Sita</creatorcontrib><creatorcontrib>Vernooij, Meike W.</creatorcontrib><creatorcontrib>Schiphof, Dieuwke</creatorcontrib><creatorcontrib>Oei, Edwin H. G.</creatorcontrib><title>A machine learning approach to distinguish between knees without and with osteoarthritis using MRI-based radiomic features from tibial bone</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objectives Our aim was to assess the ability of semi-automatically extracted magnetic resonance imaging (MRI)–based radiomic features from tibial subchondral bone to distinguish between knees without and with osteoarthritis. Methods The right knees of 665 females from the population-based Rotterdam Study scanned with 1.5T MRI were analyzed. A fast imaging employing steady-state acquisition sequence was used for the quantitative bone analyses. Tibial bone was segmented using a method that combines multi-atlas and appearance models. Radiomic features related to the shape and texture were calculated from six volumes of interests (VOIs) in the proximal tibia. Machine learning–based Elastic Net models with 10-fold cross-validation were used to distinguish between knees without and with MRI Osteoarthritis Knee Score (MOAKS)–based tibiofemoral osteoarthritis. Performance of the covariate (age and body mass index), image features, and combined covariate + image features models were assessed using the area under the receiver operating characteristic curve (ROC AUC). Results Of 665 analyzed knees, 76 (11.4%) had osteoarthritis. An ROC AUC of 0.68 (95% confidence interval (CI): 0.60–0.75) was obtained using the covariate model. The image features model yielded an ROC AUC of 0.80 (CI: 0.73–0.87). The model that combined image features from all VOIs and covariates yielded an ROC AUC of 0.80 (CI: 0.73–0.87). Conclusion Our results suggest that radiomic features are useful imaging biomarkers of subchondral bone for the diagnosis of osteoarthritis. An advantage of assessing bone on MRI instead of on radiographs is that other tissues can be assessed simultaneously. Key Points • Subchondral bone plays a role in the osteoarthritis disease processes. • MRI radiomics is a potential method for quantifying changes in subchondral bone. • Semi-automatically extracted radiomic features of tibia differ between subjects without and with osteoarthritis.</description><subject>Arthritis</subject><subject>Biomarkers</subject><subject>Biomedical materials</subject><subject>Body mass</subject><subject>Body mass index</subject><subject>Body size</subject><subject>Bone imaging</subject><subject>Confidence intervals</subject><subject>Diagnostic Radiology</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Humans</subject><subject>Imaging</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Knee</subject><subject>Knee Joint</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Musculoskeletal</subject><subject>Neuroradiology</subject><subject>Osteoarthritis</subject><subject>Osteoarthritis, Knee - diagnostic imaging</subject><subject>Population studies</subject><subject>Radiology</subject><subject>Radiomics</subject><subject>ROC Curve</subject><subject>Subchondral bone</subject><subject>Tibia</subject><subject>Tibia - diagnostic imaging</subject><subject>Ultrasound</subject><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1vFSEUhonR2Gv1D7gwJG7coDAwF9iYNI0fTWpMjK4JzBzuUGfgCkwbf4N_Wtpb68fCFeSc5zxw8iL0lNGXjFL5qlDKOSW0Y4RK3TPS30MbJnhHGFXiPtpQzRWRWosj9KiUC0qpZkI-REecKyWEpBv04wQvdphCBDyDzTHEHbb7fU6tiGvCYyi11dZQJuygXgFE_DUCFHwV6pTWim0cb-44lQrJ5jrlUEPBa7l2ffh0RpwtMOJsx5CWMGAPtq65GXxOC67BBTtjlyI8Rg-8nQs8uT2P0Ze3bz6fvifnH9-dnZ6ck0FIUQnbeu8kOGDae8q2TkrlFbd24I4x3nZWIwzKOyvdFpTQDKyVvu-Vc5p54Mfo9cG7X90C4wCxZjubfQ6Lzd9NssH83YlhMrt0aVTfca5lE7y4FeT0bYVSzRLKAPNsI6S1mK5nWyWYUF1Dn_-DXqQ1x7Zeo1SnNG-pNKo7UENOpWTwd59h1FxnbQ5Zm5a1ucna9G3o2Z9r3I38CrcB_ACU1oo7yL_f_o_2J_hNuSQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Hirvasniemi, Jukka</creator><creator>Klein, Stefan</creator><creator>Bierma-Zeinstra, Sita</creator><creator>Vernooij, Meike W.</creator><creator>Schiphof, Dieuwke</creator><creator>Oei, Edwin H. G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3727-3427</orcidid></search><sort><creationdate>20211101</creationdate><title>A machine learning approach to distinguish between knees without and with osteoarthritis using MRI-based radiomic features from tibial bone</title><author>Hirvasniemi, Jukka ; Klein, Stefan ; Bierma-Zeinstra, Sita ; Vernooij, Meike W. ; Schiphof, Dieuwke ; Oei, Edwin H. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-16ffb7ebe19ff016b778f83aac3b1139388dec8fba7b6e8491eaa7f558bb91fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arthritis</topic><topic>Biomarkers</topic><topic>Biomedical materials</topic><topic>Body mass</topic><topic>Body mass index</topic><topic>Body size</topic><topic>Bone imaging</topic><topic>Confidence intervals</topic><topic>Diagnostic Radiology</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Humans</topic><topic>Imaging</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Knee</topic><topic>Knee Joint</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Musculoskeletal</topic><topic>Neuroradiology</topic><topic>Osteoarthritis</topic><topic>Osteoarthritis, Knee - diagnostic imaging</topic><topic>Population studies</topic><topic>Radiology</topic><topic>Radiomics</topic><topic>ROC Curve</topic><topic>Subchondral bone</topic><topic>Tibia</topic><topic>Tibia - diagnostic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirvasniemi, Jukka</creatorcontrib><creatorcontrib>Klein, Stefan</creatorcontrib><creatorcontrib>Bierma-Zeinstra, Sita</creatorcontrib><creatorcontrib>Vernooij, Meike W.</creatorcontrib><creatorcontrib>Schiphof, Dieuwke</creatorcontrib><creatorcontrib>Oei, Edwin H. G.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirvasniemi, Jukka</au><au>Klein, Stefan</au><au>Bierma-Zeinstra, Sita</au><au>Vernooij, Meike W.</au><au>Schiphof, Dieuwke</au><au>Oei, Edwin H. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine learning approach to distinguish between knees without and with osteoarthritis using MRI-based radiomic features from tibial bone</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>31</volume><issue>11</issue><spage>8513</spage><epage>8521</epage><pages>8513-8521</pages><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objectives Our aim was to assess the ability of semi-automatically extracted magnetic resonance imaging (MRI)–based radiomic features from tibial subchondral bone to distinguish between knees without and with osteoarthritis. Methods The right knees of 665 females from the population-based Rotterdam Study scanned with 1.5T MRI were analyzed. A fast imaging employing steady-state acquisition sequence was used for the quantitative bone analyses. Tibial bone was segmented using a method that combines multi-atlas and appearance models. Radiomic features related to the shape and texture were calculated from six volumes of interests (VOIs) in the proximal tibia. Machine learning–based Elastic Net models with 10-fold cross-validation were used to distinguish between knees without and with MRI Osteoarthritis Knee Score (MOAKS)–based tibiofemoral osteoarthritis. Performance of the covariate (age and body mass index), image features, and combined covariate + image features models were assessed using the area under the receiver operating characteristic curve (ROC AUC). Results Of 665 analyzed knees, 76 (11.4%) had osteoarthritis. An ROC AUC of 0.68 (95% confidence interval (CI): 0.60–0.75) was obtained using the covariate model. The image features model yielded an ROC AUC of 0.80 (CI: 0.73–0.87). The model that combined image features from all VOIs and covariates yielded an ROC AUC of 0.80 (CI: 0.73–0.87). Conclusion Our results suggest that radiomic features are useful imaging biomarkers of subchondral bone for the diagnosis of osteoarthritis. An advantage of assessing bone on MRI instead of on radiographs is that other tissues can be assessed simultaneously. Key Points • Subchondral bone plays a role in the osteoarthritis disease processes. • MRI radiomics is a potential method for quantifying changes in subchondral bone. • Semi-automatically extracted radiomic features of tibia differ between subjects without and with osteoarthritis.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33884470</pmid><doi>10.1007/s00330-021-07951-5</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3727-3427</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0938-7994
ispartof European radiology, 2021-11, Vol.31 (11), p.8513-8521
issn 0938-7994
1432-1084
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8523397
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Arthritis
Biomarkers
Biomedical materials
Body mass
Body mass index
Body size
Bone imaging
Confidence intervals
Diagnostic Radiology
Feature extraction
Female
Humans
Imaging
Internal Medicine
Interventional Radiology
Knee
Knee Joint
Learning algorithms
Machine Learning
Magnetic Resonance Imaging
Medical imaging
Medicine
Medicine & Public Health
Musculoskeletal
Neuroradiology
Osteoarthritis
Osteoarthritis, Knee - diagnostic imaging
Population studies
Radiology
Radiomics
ROC Curve
Subchondral bone
Tibia
Tibia - diagnostic imaging
Ultrasound
title A machine learning approach to distinguish between knees without and with osteoarthritis using MRI-based radiomic features from tibial bone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A34%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%20learning%20approach%20to%20distinguish%20between%20knees%20without%20and%20with%20osteoarthritis%20using%20MRI-based%20radiomic%20features%20from%20tibial%20bone&rft.jtitle=European%20radiology&rft.au=Hirvasniemi,%20Jukka&rft.date=2021-11-01&rft.volume=31&rft.issue=11&rft.spage=8513&rft.epage=8521&rft.pages=8513-8521&rft.issn=0938-7994&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-021-07951-5&rft_dat=%3Cproquest_pubme%3E2516841482%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582893000&rft_id=info:pmid/33884470&rfr_iscdi=true