Dynamic flow and shear stress as key parameters for intestinal cells morphology and polarization in an organ-on-a-chip model
Gut-on-a-chip microfluidic devices have emerged as versatile and practical systems for modeling the human intestine in vitro . Cells cultured under microfluidic conditions experience the effect of shear stress, used as a biomechanical cue to promote a faster cell polarization in Caco-2 cells when co...
Gespeichert in:
Veröffentlicht in: | Biomedical microdevices 2021-12, Vol.23 (4), p.55-55, Article 55 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 4 |
container_start_page | 55 |
container_title | Biomedical microdevices |
container_volume | 23 |
creator | Fois, Chiara A. M. Schindeler, Aaron Valtchev, Peter Dehghani, Fariba |
description | Gut-on-a-chip microfluidic devices have emerged as versatile and practical systems for modeling the human intestine
in vitro
. Cells cultured under microfluidic conditions experience the effect of shear stress, used as a biomechanical cue to promote a faster cell polarization in Caco-2 cells when compared with static culture conditions. However, published systems to date have utilized a constant flow rate that fails to account for changes in cell shear stress (
τ
c
) resulting from changes in cell elongation that occur with differentiation. In this study, computational fluid dynamics (CFD) simulations predict that cells with villi-like morphology experience a
τ
c
higher than bulge-like cells at the initial growth stages. Therefore, we investigated the use of a dynamic flow rate to maintain a constant
τ
c
across the experiment. Microscopic assessment of cell morphology and dome formation confirmed the initiation of Caco-2 polarization within three days. Next, adopting our dynamic approach, we evaluated whether the following decreased flow could still contribute to complete cell differentiation if compared with the standard constant flow methodology. Caco-2 cells polarized under both conditions, secreted mucin-2 and villin and formed tight junctions and crypt-villi structures. Gene expression was not impacted using the dynamic flow rate. In conclusion, our dynamic flow approach still facilitates cell differentiation while enabling a reduced consumption of reagents. |
doi_str_mv | 10.1007/s10544-021-00591-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8520520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582818488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-fa60ae3390442fadce5898890ea4c585db2e043c7d0b0b48f14c6195866e5b253</originalsourceid><addsrcrecordid>eNp9kUtvFiEUhidGY2v1D7gwJG7coMBwm42JqfWSNHGja3KGYb6PysAI89WM6Y-Xdmq9LExIIJznfQ-Ht2meUvKSEqJeFUoE55gwigkRHcXrveaYCsWwVprer-dWK8yokkfNo1IuCKGdlPJhc9RyKUTLuuPm6u0aYfIWjSF9RxAHVPYOMipLdqUgKOirW9EMGSa3uFzQmDLycXFl8RECsi6EgqaU530KabfeWMwpQPY_YPEpVrjeoZR3EHGKGLDd-7kqBhceNw9GCMU9ud1Pmi_vzj6ffsDnn95_PH1zji1XfMEjSAKubTvCORthsE7oTuuOOOBWaDH0zBHeWjWQnvRcj5RbSTuhpXSiZ6I9aV5vvvOhn1zVxyVDMHP2E-TVJPDm70r0e7NLl0YLRuqqBi9uDXL6dqizm8mX69EhunQohgnNNNVc64o-_we9SIdcv2qjuFIbxTbK5lRKduPdYygx1-GaLVxTwzU34Zq1ip79Ocad5FeaFWg3oNRS3Ln8u_d_bH8CHJeyow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582477488</pqid></control><display><type>article</type><title>Dynamic flow and shear stress as key parameters for intestinal cells morphology and polarization in an organ-on-a-chip model</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Fois, Chiara A. M. ; Schindeler, Aaron ; Valtchev, Peter ; Dehghani, Fariba</creator><creatorcontrib>Fois, Chiara A. M. ; Schindeler, Aaron ; Valtchev, Peter ; Dehghani, Fariba</creatorcontrib><description>Gut-on-a-chip microfluidic devices have emerged as versatile and practical systems for modeling the human intestine
in vitro
. Cells cultured under microfluidic conditions experience the effect of shear stress, used as a biomechanical cue to promote a faster cell polarization in Caco-2 cells when compared with static culture conditions. However, published systems to date have utilized a constant flow rate that fails to account for changes in cell shear stress (
τ
c
) resulting from changes in cell elongation that occur with differentiation. In this study, computational fluid dynamics (CFD) simulations predict that cells with villi-like morphology experience a
τ
c
higher than bulge-like cells at the initial growth stages. Therefore, we investigated the use of a dynamic flow rate to maintain a constant
τ
c
across the experiment. Microscopic assessment of cell morphology and dome formation confirmed the initiation of Caco-2 polarization within three days. Next, adopting our dynamic approach, we evaluated whether the following decreased flow could still contribute to complete cell differentiation if compared with the standard constant flow methodology. Caco-2 cells polarized under both conditions, secreted mucin-2 and villin and formed tight junctions and crypt-villi structures. Gene expression was not impacted using the dynamic flow rate. In conclusion, our dynamic flow approach still facilitates cell differentiation while enabling a reduced consumption of reagents.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-021-00591-y</identifier><identifier>PMID: 34655329</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochips ; Biological and Medical Physics ; Biomechanics ; Biomedical Engineering and Bioengineering ; Biophysics ; Caco-2 Cells ; Cell culture ; Cell differentiation ; Cell morphology ; Chemical reduction ; Computational fluid dynamics ; Computer applications ; Cytology ; Differentiation (biology) ; Elongation ; Engineering ; Engineering Fluid Dynamics ; Flow velocity ; Fluid dynamics ; Gene expression ; Humans ; Hydrodynamics ; Intestine ; Lab-On-A-Chip Devices ; Mathematical models ; Microfluidic devices ; Microfluidics ; Morphology ; Mucin ; Nanotechnology ; Polarization ; Reagents ; Shear stress ; Stress, Mechanical ; Tight Junctions</subject><ispartof>Biomedical microdevices, 2021-12, Vol.23 (4), p.55-55, Article 55</ispartof><rights>Crown 2021</rights><rights>2021. Crown.</rights><rights>Crown 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-fa60ae3390442fadce5898890ea4c585db2e043c7d0b0b48f14c6195866e5b253</citedby><cites>FETCH-LOGICAL-c474t-fa60ae3390442fadce5898890ea4c585db2e043c7d0b0b48f14c6195866e5b253</cites><orcidid>0000-0002-7757-6281 ; 0000-0002-7805-8101 ; 0000-0002-8296-3235 ; 0000-0002-2622-5721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-021-00591-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-021-00591-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34655329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fois, Chiara A. M.</creatorcontrib><creatorcontrib>Schindeler, Aaron</creatorcontrib><creatorcontrib>Valtchev, Peter</creatorcontrib><creatorcontrib>Dehghani, Fariba</creatorcontrib><title>Dynamic flow and shear stress as key parameters for intestinal cells morphology and polarization in an organ-on-a-chip model</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><addtitle>Biomed Microdevices</addtitle><description>Gut-on-a-chip microfluidic devices have emerged as versatile and practical systems for modeling the human intestine
in vitro
. Cells cultured under microfluidic conditions experience the effect of shear stress, used as a biomechanical cue to promote a faster cell polarization in Caco-2 cells when compared with static culture conditions. However, published systems to date have utilized a constant flow rate that fails to account for changes in cell shear stress (
τ
c
) resulting from changes in cell elongation that occur with differentiation. In this study, computational fluid dynamics (CFD) simulations predict that cells with villi-like morphology experience a
τ
c
higher than bulge-like cells at the initial growth stages. Therefore, we investigated the use of a dynamic flow rate to maintain a constant
τ
c
across the experiment. Microscopic assessment of cell morphology and dome formation confirmed the initiation of Caco-2 polarization within three days. Next, adopting our dynamic approach, we evaluated whether the following decreased flow could still contribute to complete cell differentiation if compared with the standard constant flow methodology. Caco-2 cells polarized under both conditions, secreted mucin-2 and villin and formed tight junctions and crypt-villi structures. Gene expression was not impacted using the dynamic flow rate. In conclusion, our dynamic flow approach still facilitates cell differentiation while enabling a reduced consumption of reagents.</description><subject>Biochips</subject><subject>Biological and Medical Physics</subject><subject>Biomechanics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Caco-2 Cells</subject><subject>Cell culture</subject><subject>Cell differentiation</subject><subject>Cell morphology</subject><subject>Chemical reduction</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Cytology</subject><subject>Differentiation (biology)</subject><subject>Elongation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Intestine</subject><subject>Lab-On-A-Chip Devices</subject><subject>Mathematical models</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Morphology</subject><subject>Mucin</subject><subject>Nanotechnology</subject><subject>Polarization</subject><subject>Reagents</subject><subject>Shear stress</subject><subject>Stress, Mechanical</subject><subject>Tight Junctions</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtvFiEUhidGY2v1D7gwJG7coMBwm42JqfWSNHGja3KGYb6PysAI89WM6Y-Xdmq9LExIIJznfQ-Ht2meUvKSEqJeFUoE55gwigkRHcXrveaYCsWwVprer-dWK8yokkfNo1IuCKGdlPJhc9RyKUTLuuPm6u0aYfIWjSF9RxAHVPYOMipLdqUgKOirW9EMGSa3uFzQmDLycXFl8RECsi6EgqaU530KabfeWMwpQPY_YPEpVrjeoZR3EHGKGLDd-7kqBhceNw9GCMU9ud1Pmi_vzj6ffsDnn95_PH1zji1XfMEjSAKubTvCORthsE7oTuuOOOBWaDH0zBHeWjWQnvRcj5RbSTuhpXSiZ6I9aV5vvvOhn1zVxyVDMHP2E-TVJPDm70r0e7NLl0YLRuqqBi9uDXL6dqizm8mX69EhunQohgnNNNVc64o-_we9SIdcv2qjuFIbxTbK5lRKduPdYygx1-GaLVxTwzU34Zq1ip79Ocad5FeaFWg3oNRS3Ln8u_d_bH8CHJeyow</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Fois, Chiara A. M.</creator><creator>Schindeler, Aaron</creator><creator>Valtchev, Peter</creator><creator>Dehghani, Fariba</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7757-6281</orcidid><orcidid>https://orcid.org/0000-0002-7805-8101</orcidid><orcidid>https://orcid.org/0000-0002-8296-3235</orcidid><orcidid>https://orcid.org/0000-0002-2622-5721</orcidid></search><sort><creationdate>20211201</creationdate><title>Dynamic flow and shear stress as key parameters for intestinal cells morphology and polarization in an organ-on-a-chip model</title><author>Fois, Chiara A. M. ; Schindeler, Aaron ; Valtchev, Peter ; Dehghani, Fariba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-fa60ae3390442fadce5898890ea4c585db2e043c7d0b0b48f14c6195866e5b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochips</topic><topic>Biological and Medical Physics</topic><topic>Biomechanics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Caco-2 Cells</topic><topic>Cell culture</topic><topic>Cell differentiation</topic><topic>Cell morphology</topic><topic>Chemical reduction</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Cytology</topic><topic>Differentiation (biology)</topic><topic>Elongation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Intestine</topic><topic>Lab-On-A-Chip Devices</topic><topic>Mathematical models</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Morphology</topic><topic>Mucin</topic><topic>Nanotechnology</topic><topic>Polarization</topic><topic>Reagents</topic><topic>Shear stress</topic><topic>Stress, Mechanical</topic><topic>Tight Junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fois, Chiara A. M.</creatorcontrib><creatorcontrib>Schindeler, Aaron</creatorcontrib><creatorcontrib>Valtchev, Peter</creatorcontrib><creatorcontrib>Dehghani, Fariba</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fois, Chiara A. M.</au><au>Schindeler, Aaron</au><au>Valtchev, Peter</au><au>Dehghani, Fariba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic flow and shear stress as key parameters for intestinal cells morphology and polarization in an organ-on-a-chip model</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><addtitle>Biomed Microdevices</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>23</volume><issue>4</issue><spage>55</spage><epage>55</epage><pages>55-55</pages><artnum>55</artnum><issn>1387-2176</issn><eissn>1572-8781</eissn><abstract>Gut-on-a-chip microfluidic devices have emerged as versatile and practical systems for modeling the human intestine
in vitro
. Cells cultured under microfluidic conditions experience the effect of shear stress, used as a biomechanical cue to promote a faster cell polarization in Caco-2 cells when compared with static culture conditions. However, published systems to date have utilized a constant flow rate that fails to account for changes in cell shear stress (
τ
c
) resulting from changes in cell elongation that occur with differentiation. In this study, computational fluid dynamics (CFD) simulations predict that cells with villi-like morphology experience a
τ
c
higher than bulge-like cells at the initial growth stages. Therefore, we investigated the use of a dynamic flow rate to maintain a constant
τ
c
across the experiment. Microscopic assessment of cell morphology and dome formation confirmed the initiation of Caco-2 polarization within three days. Next, adopting our dynamic approach, we evaluated whether the following decreased flow could still contribute to complete cell differentiation if compared with the standard constant flow methodology. Caco-2 cells polarized under both conditions, secreted mucin-2 and villin and formed tight junctions and crypt-villi structures. Gene expression was not impacted using the dynamic flow rate. In conclusion, our dynamic flow approach still facilitates cell differentiation while enabling a reduced consumption of reagents.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34655329</pmid><doi>10.1007/s10544-021-00591-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7757-6281</orcidid><orcidid>https://orcid.org/0000-0002-7805-8101</orcidid><orcidid>https://orcid.org/0000-0002-8296-3235</orcidid><orcidid>https://orcid.org/0000-0002-2622-5721</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-2176 |
ispartof | Biomedical microdevices, 2021-12, Vol.23 (4), p.55-55, Article 55 |
issn | 1387-2176 1572-8781 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8520520 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Biochips Biological and Medical Physics Biomechanics Biomedical Engineering and Bioengineering Biophysics Caco-2 Cells Cell culture Cell differentiation Cell morphology Chemical reduction Computational fluid dynamics Computer applications Cytology Differentiation (biology) Elongation Engineering Engineering Fluid Dynamics Flow velocity Fluid dynamics Gene expression Humans Hydrodynamics Intestine Lab-On-A-Chip Devices Mathematical models Microfluidic devices Microfluidics Morphology Mucin Nanotechnology Polarization Reagents Shear stress Stress, Mechanical Tight Junctions |
title | Dynamic flow and shear stress as key parameters for intestinal cells morphology and polarization in an organ-on-a-chip model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20flow%20and%20shear%20stress%20as%20key%20parameters%20for%20intestinal%20cells%20morphology%20and%20polarization%20in%20an%20organ-on-a-chip%20model&rft.jtitle=Biomedical%20microdevices&rft.au=Fois,%20Chiara%20A.%20M.&rft.date=2021-12-01&rft.volume=23&rft.issue=4&rft.spage=55&rft.epage=55&rft.pages=55-55&rft.artnum=55&rft.issn=1387-2176&rft.eissn=1572-8781&rft_id=info:doi/10.1007/s10544-021-00591-y&rft_dat=%3Cproquest_pubme%3E2582818488%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582477488&rft_id=info:pmid/34655329&rfr_iscdi=true |