Expression of acid cleavable Asp-Pro linked multimeric AFP peptide in E. coli
Background Difficult to express peptides are usually produced by co-expression with fusion partners. In this case, a significant mass part of the recombinant product falls on the subsequently removed fusion partner. On the other hand, multimerization of peptides is known to improve its proteolytic s...
Gespeichert in:
Veröffentlicht in: | Journal of Genetic Engineering and Biotechnology 2021-10, Vol.19 (1), p.155-10, Article 155 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 155 |
container_title | Journal of Genetic Engineering and Biotechnology |
container_volume | 19 |
creator | Mollaev, Murad Zabolotskii, Artur Gorokhovets, Neonila Nikolskaya, Elena Sokol, Maria Tsedilin, Andrey Mollaeva, Mariia Chirkina, Margarita Kuvaev, Timofey Pshenichnikova, Anna Yabbarov, Nikita |
description | Background
Difficult to express peptides are usually produced by co-expression with fusion partners. In this case, a significant mass part of the recombinant product falls on the subsequently removed fusion partner. On the other hand, multimerization of peptides is known to improve its proteolytic stability in
E. coli
due to the inclusion of body formation, which is sequence specific. Thereby, the peptide itself may serve as a fusion partner and one may produce more than one mole of the desired product per mole of fusion protein. This paper proposes a method for multimeric production of a human alpha-fetoprotein fragment with optimized multimer design and processing. This fragment may further find its application in the cytotoxic drug delivery field or as an inhibitor of endogenous alpha-fetoprotein.
Results
Multimerization of the extended alpha-fetoprotein receptor-binding peptide improved its stability in
E. coli
, and pentamer was found to be the largest stable with the highest expression level. As high as 10 aspartate-proline bonds used to separate peptide repeats were easily hydrolyzed in optimized formic acid-based conditions with 100% multimer conversion. The major product was represented by unaltered functional alpha-fetoprotein fragment while most side-products were its formyl-Pro, formyl-Tyr, and formyl-Lys derivatives. Single-step semi-preparative RP-HPLC was enough to separate unaltered peptide from the hydrolysis mixture.
Conclusions
A recombinant peptide derived from human alpha-fetoprotein can be produced via multimerization with subsequent formic acid hydrolysis and RP-HPLC purification. The reported procedure is characterized by the lower reagent cost in comparison with enzymatic hydrolysis of peptide fusions and solid-phase synthesis. This method may be adopted for different peptide expression, especially with low amino and hydroxy side chain content. |
doi_str_mv | 10.1186/s43141-021-00265-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8517049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A679537570</galeid><doaj_id>oai_doaj_org_article_2f34c10aeb634c0e8a8b9a05e8fb6d16</doaj_id><sourcerecordid>A679537570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c617t-72137c21ddfa735335c718a82d875d8ca13f782b6017d3a8e3f677fb824bf41b3</originalsourceid><addsrcrecordid>eNp9Ul1rFDEUHUSxS-0f8Cngiy-zzU0mH_siLGWrhYp9UPAtZPKxZp2ZjMlMqf_etFNaVsSEkMvNOefmJqeq3gJeA0h-nhsKDdSYlIUJZzV7Ua0I3uCabQh-Wa2AS1EDE99PqrOcD7gM1khg8Lo6oQ0vIeBV9Xl3NyaXc4gDih5pEywyndO3uu0c2uaxvkkRdWH46Szq524KvUvBoO3lDRrdOAXrUBjQbo1M7MKb6pXXXXZnj_tp9e1y9_XiU3395ePVxfa6NhzEVAsCVBgC1notKKOUGQFSS2KlYFYaDdQLSVqOQViqpaOeC-FbSZrWN9DS0-pq0bVRH9SYQq_TbxV1UA-JmPZKpymURhTxtDGAtWt5CbArZdqNxsxJ33ILvGh9WLTGue2dNW6Yku6ORI9PhvBD7eOtkgwEbjZF4P2jQIq_Zpcn1YdsXNfpwcU5KwqMghCYiwJ99xf0EOc0lKdSRAKhTVN-7Rm116WBMPhY6pp7UbXlYsOoYAIX1PofqDKt64OJg_Oh5I8IZCGYFHNOzj_1CFjde0otnlLFU-rBU4oVEl1IuYCHvUvPN_4P6w_3O8nc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812344168</pqid></control><display><type>article</type><title>Expression of acid cleavable Asp-Pro linked multimeric AFP peptide in E. coli</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><creator>Mollaev, Murad ; Zabolotskii, Artur ; Gorokhovets, Neonila ; Nikolskaya, Elena ; Sokol, Maria ; Tsedilin, Andrey ; Mollaeva, Mariia ; Chirkina, Margarita ; Kuvaev, Timofey ; Pshenichnikova, Anna ; Yabbarov, Nikita</creator><creatorcontrib>Mollaev, Murad ; Zabolotskii, Artur ; Gorokhovets, Neonila ; Nikolskaya, Elena ; Sokol, Maria ; Tsedilin, Andrey ; Mollaeva, Mariia ; Chirkina, Margarita ; Kuvaev, Timofey ; Pshenichnikova, Anna ; Yabbarov, Nikita</creatorcontrib><description>Background
Difficult to express peptides are usually produced by co-expression with fusion partners. In this case, a significant mass part of the recombinant product falls on the subsequently removed fusion partner. On the other hand, multimerization of peptides is known to improve its proteolytic stability in
E. coli
due to the inclusion of body formation, which is sequence specific. Thereby, the peptide itself may serve as a fusion partner and one may produce more than one mole of the desired product per mole of fusion protein. This paper proposes a method for multimeric production of a human alpha-fetoprotein fragment with optimized multimer design and processing. This fragment may further find its application in the cytotoxic drug delivery field or as an inhibitor of endogenous alpha-fetoprotein.
Results
Multimerization of the extended alpha-fetoprotein receptor-binding peptide improved its stability in
E. coli
, and pentamer was found to be the largest stable with the highest expression level. As high as 10 aspartate-proline bonds used to separate peptide repeats were easily hydrolyzed in optimized formic acid-based conditions with 100% multimer conversion. The major product was represented by unaltered functional alpha-fetoprotein fragment while most side-products were its formyl-Pro, formyl-Tyr, and formyl-Lys derivatives. Single-step semi-preparative RP-HPLC was enough to separate unaltered peptide from the hydrolysis mixture.
Conclusions
A recombinant peptide derived from human alpha-fetoprotein can be produced via multimerization with subsequent formic acid hydrolysis and RP-HPLC purification. The reported procedure is characterized by the lower reagent cost in comparison with enzymatic hydrolysis of peptide fusions and solid-phase synthesis. This method may be adopted for different peptide expression, especially with low amino and hydroxy side chain content.</description><identifier>ISSN: 1687-157X</identifier><identifier>EISSN: 2090-5920</identifier><identifier>DOI: 10.1186/s43141-021-00265-5</identifier><identifier>PMID: 34648110</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>acid hydrolysis ; Alpha-fetoprotein ; Asp-Pro cleavage ; Aspartate ; Biomedical Engineering and Bioengineering ; biotechnology ; Cytotoxicity ; Design optimization ; Drug delivery ; Drug delivery systems ; Drugs ; E coli ; Engineering ; enzymatic hydrolysis ; Enzymes ; Escherichia coli ; Formic acid ; Fusion protein ; Glycoproteins ; High-performance liquid chromatography ; humans ; Hydrolysis ; Liver cancer ; Molecular weight ; Multimer expression ; Peptides ; Plasmids ; Proline ; Proteolysis ; Reagents ; Recombinant peptide ; recombinant peptides ; Solid phase methods ; Solid phase synthesis ; Stability ; Vehicles ; α-Fetoprotein</subject><ispartof>Journal of Genetic Engineering and Biotechnology, 2021-10, Vol.19 (1), p.155-10, Article 155</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c617t-72137c21ddfa735335c718a82d875d8ca13f782b6017d3a8e3f677fb824bf41b3</citedby><cites>FETCH-LOGICAL-c617t-72137c21ddfa735335c718a82d875d8ca13f782b6017d3a8e3f677fb824bf41b3</cites><orcidid>0000-0003-3361-9136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517049/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517049/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids></links><search><creatorcontrib>Mollaev, Murad</creatorcontrib><creatorcontrib>Zabolotskii, Artur</creatorcontrib><creatorcontrib>Gorokhovets, Neonila</creatorcontrib><creatorcontrib>Nikolskaya, Elena</creatorcontrib><creatorcontrib>Sokol, Maria</creatorcontrib><creatorcontrib>Tsedilin, Andrey</creatorcontrib><creatorcontrib>Mollaeva, Mariia</creatorcontrib><creatorcontrib>Chirkina, Margarita</creatorcontrib><creatorcontrib>Kuvaev, Timofey</creatorcontrib><creatorcontrib>Pshenichnikova, Anna</creatorcontrib><creatorcontrib>Yabbarov, Nikita</creatorcontrib><title>Expression of acid cleavable Asp-Pro linked multimeric AFP peptide in E. coli</title><title>Journal of Genetic Engineering and Biotechnology</title><addtitle>J Genet Eng Biotechnol</addtitle><description>Background
Difficult to express peptides are usually produced by co-expression with fusion partners. In this case, a significant mass part of the recombinant product falls on the subsequently removed fusion partner. On the other hand, multimerization of peptides is known to improve its proteolytic stability in
E. coli
due to the inclusion of body formation, which is sequence specific. Thereby, the peptide itself may serve as a fusion partner and one may produce more than one mole of the desired product per mole of fusion protein. This paper proposes a method for multimeric production of a human alpha-fetoprotein fragment with optimized multimer design and processing. This fragment may further find its application in the cytotoxic drug delivery field or as an inhibitor of endogenous alpha-fetoprotein.
Results
Multimerization of the extended alpha-fetoprotein receptor-binding peptide improved its stability in
E. coli
, and pentamer was found to be the largest stable with the highest expression level. As high as 10 aspartate-proline bonds used to separate peptide repeats were easily hydrolyzed in optimized formic acid-based conditions with 100% multimer conversion. The major product was represented by unaltered functional alpha-fetoprotein fragment while most side-products were its formyl-Pro, formyl-Tyr, and formyl-Lys derivatives. Single-step semi-preparative RP-HPLC was enough to separate unaltered peptide from the hydrolysis mixture.
Conclusions
A recombinant peptide derived from human alpha-fetoprotein can be produced via multimerization with subsequent formic acid hydrolysis and RP-HPLC purification. The reported procedure is characterized by the lower reagent cost in comparison with enzymatic hydrolysis of peptide fusions and solid-phase synthesis. This method may be adopted for different peptide expression, especially with low amino and hydroxy side chain content.</description><subject>acid hydrolysis</subject><subject>Alpha-fetoprotein</subject><subject>Asp-Pro cleavage</subject><subject>Aspartate</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>biotechnology</subject><subject>Cytotoxicity</subject><subject>Design optimization</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Drugs</subject><subject>E coli</subject><subject>Engineering</subject><subject>enzymatic hydrolysis</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Formic acid</subject><subject>Fusion protein</subject><subject>Glycoproteins</subject><subject>High-performance liquid chromatography</subject><subject>humans</subject><subject>Hydrolysis</subject><subject>Liver cancer</subject><subject>Molecular weight</subject><subject>Multimer expression</subject><subject>Peptides</subject><subject>Plasmids</subject><subject>Proline</subject><subject>Proteolysis</subject><subject>Reagents</subject><subject>Recombinant peptide</subject><subject>recombinant peptides</subject><subject>Solid phase methods</subject><subject>Solid phase synthesis</subject><subject>Stability</subject><subject>Vehicles</subject><subject>α-Fetoprotein</subject><issn>1687-157X</issn><issn>2090-5920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9Ul1rFDEUHUSxS-0f8Cngiy-zzU0mH_siLGWrhYp9UPAtZPKxZp2ZjMlMqf_etFNaVsSEkMvNOefmJqeq3gJeA0h-nhsKDdSYlIUJZzV7Ua0I3uCabQh-Wa2AS1EDE99PqrOcD7gM1khg8Lo6oQ0vIeBV9Xl3NyaXc4gDih5pEywyndO3uu0c2uaxvkkRdWH46Szq524KvUvBoO3lDRrdOAXrUBjQbo1M7MKb6pXXXXZnj_tp9e1y9_XiU3395ePVxfa6NhzEVAsCVBgC1notKKOUGQFSS2KlYFYaDdQLSVqOQViqpaOeC-FbSZrWN9DS0-pq0bVRH9SYQq_TbxV1UA-JmPZKpymURhTxtDGAtWt5CbArZdqNxsxJ33ILvGh9WLTGue2dNW6Yku6ORI9PhvBD7eOtkgwEbjZF4P2jQIq_Zpcn1YdsXNfpwcU5KwqMghCYiwJ99xf0EOc0lKdSRAKhTVN-7Rm116WBMPhY6pp7UbXlYsOoYAIX1PofqDKt64OJg_Oh5I8IZCGYFHNOzj_1CFjde0otnlLFU-rBU4oVEl1IuYCHvUvPN_4P6w_3O8nc</recordid><startdate>20211014</startdate><enddate>20211014</enddate><creator>Mollaev, Murad</creator><creator>Zabolotskii, Artur</creator><creator>Gorokhovets, Neonila</creator><creator>Nikolskaya, Elena</creator><creator>Sokol, Maria</creator><creator>Tsedilin, Andrey</creator><creator>Mollaeva, Mariia</creator><creator>Chirkina, Margarita</creator><creator>Kuvaev, Timofey</creator><creator>Pshenichnikova, Anna</creator><creator>Yabbarov, Nikita</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Elsevier</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3361-9136</orcidid></search><sort><creationdate>20211014</creationdate><title>Expression of acid cleavable Asp-Pro linked multimeric AFP peptide in E. coli</title><author>Mollaev, Murad ; Zabolotskii, Artur ; Gorokhovets, Neonila ; Nikolskaya, Elena ; Sokol, Maria ; Tsedilin, Andrey ; Mollaeva, Mariia ; Chirkina, Margarita ; Kuvaev, Timofey ; Pshenichnikova, Anna ; Yabbarov, Nikita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c617t-72137c21ddfa735335c718a82d875d8ca13f782b6017d3a8e3f677fb824bf41b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>acid hydrolysis</topic><topic>Alpha-fetoprotein</topic><topic>Asp-Pro cleavage</topic><topic>Aspartate</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>biotechnology</topic><topic>Cytotoxicity</topic><topic>Design optimization</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Drugs</topic><topic>E coli</topic><topic>Engineering</topic><topic>enzymatic hydrolysis</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Formic acid</topic><topic>Fusion protein</topic><topic>Glycoproteins</topic><topic>High-performance liquid chromatography</topic><topic>humans</topic><topic>Hydrolysis</topic><topic>Liver cancer</topic><topic>Molecular weight</topic><topic>Multimer expression</topic><topic>Peptides</topic><topic>Plasmids</topic><topic>Proline</topic><topic>Proteolysis</topic><topic>Reagents</topic><topic>Recombinant peptide</topic><topic>recombinant peptides</topic><topic>Solid phase methods</topic><topic>Solid phase synthesis</topic><topic>Stability</topic><topic>Vehicles</topic><topic>α-Fetoprotein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mollaev, Murad</creatorcontrib><creatorcontrib>Zabolotskii, Artur</creatorcontrib><creatorcontrib>Gorokhovets, Neonila</creatorcontrib><creatorcontrib>Nikolskaya, Elena</creatorcontrib><creatorcontrib>Sokol, Maria</creatorcontrib><creatorcontrib>Tsedilin, Andrey</creatorcontrib><creatorcontrib>Mollaeva, Mariia</creatorcontrib><creatorcontrib>Chirkina, Margarita</creatorcontrib><creatorcontrib>Kuvaev, Timofey</creatorcontrib><creatorcontrib>Pshenichnikova, Anna</creatorcontrib><creatorcontrib>Yabbarov, Nikita</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Genetic Engineering and Biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mollaev, Murad</au><au>Zabolotskii, Artur</au><au>Gorokhovets, Neonila</au><au>Nikolskaya, Elena</au><au>Sokol, Maria</au><au>Tsedilin, Andrey</au><au>Mollaeva, Mariia</au><au>Chirkina, Margarita</au><au>Kuvaev, Timofey</au><au>Pshenichnikova, Anna</au><au>Yabbarov, Nikita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression of acid cleavable Asp-Pro linked multimeric AFP peptide in E. coli</atitle><jtitle>Journal of Genetic Engineering and Biotechnology</jtitle><stitle>J Genet Eng Biotechnol</stitle><date>2021-10-14</date><risdate>2021</risdate><volume>19</volume><issue>1</issue><spage>155</spage><epage>10</epage><pages>155-10</pages><artnum>155</artnum><issn>1687-157X</issn><eissn>2090-5920</eissn><abstract>Background
Difficult to express peptides are usually produced by co-expression with fusion partners. In this case, a significant mass part of the recombinant product falls on the subsequently removed fusion partner. On the other hand, multimerization of peptides is known to improve its proteolytic stability in
E. coli
due to the inclusion of body formation, which is sequence specific. Thereby, the peptide itself may serve as a fusion partner and one may produce more than one mole of the desired product per mole of fusion protein. This paper proposes a method for multimeric production of a human alpha-fetoprotein fragment with optimized multimer design and processing. This fragment may further find its application in the cytotoxic drug delivery field or as an inhibitor of endogenous alpha-fetoprotein.
Results
Multimerization of the extended alpha-fetoprotein receptor-binding peptide improved its stability in
E. coli
, and pentamer was found to be the largest stable with the highest expression level. As high as 10 aspartate-proline bonds used to separate peptide repeats were easily hydrolyzed in optimized formic acid-based conditions with 100% multimer conversion. The major product was represented by unaltered functional alpha-fetoprotein fragment while most side-products were its formyl-Pro, formyl-Tyr, and formyl-Lys derivatives. Single-step semi-preparative RP-HPLC was enough to separate unaltered peptide from the hydrolysis mixture.
Conclusions
A recombinant peptide derived from human alpha-fetoprotein can be produced via multimerization with subsequent formic acid hydrolysis and RP-HPLC purification. The reported procedure is characterized by the lower reagent cost in comparison with enzymatic hydrolysis of peptide fusions and solid-phase synthesis. This method may be adopted for different peptide expression, especially with low amino and hydroxy side chain content.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34648110</pmid><doi>10.1186/s43141-021-00265-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3361-9136</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-157X |
ispartof | Journal of Genetic Engineering and Biotechnology, 2021-10, Vol.19 (1), p.155-10, Article 155 |
issn | 1687-157X 2090-5920 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8517049 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; PubMed Central |
subjects | acid hydrolysis Alpha-fetoprotein Asp-Pro cleavage Aspartate Biomedical Engineering and Bioengineering biotechnology Cytotoxicity Design optimization Drug delivery Drug delivery systems Drugs E coli Engineering enzymatic hydrolysis Enzymes Escherichia coli Formic acid Fusion protein Glycoproteins High-performance liquid chromatography humans Hydrolysis Liver cancer Molecular weight Multimer expression Peptides Plasmids Proline Proteolysis Reagents Recombinant peptide recombinant peptides Solid phase methods Solid phase synthesis Stability Vehicles α-Fetoprotein |
title | Expression of acid cleavable Asp-Pro linked multimeric AFP peptide in E. coli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20of%20acid%20cleavable%20Asp-Pro%20linked%20multimeric%20AFP%20peptide%20in%20E.%20coli&rft.jtitle=Journal%20of%20Genetic%20Engineering%20and%20Biotechnology&rft.au=Mollaev,%20Murad&rft.date=2021-10-14&rft.volume=19&rft.issue=1&rft.spage=155&rft.epage=10&rft.pages=155-10&rft.artnum=155&rft.issn=1687-157X&rft.eissn=2090-5920&rft_id=info:doi/10.1186/s43141-021-00265-5&rft_dat=%3Cgale_doaj_%3EA679537570%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812344168&rft_id=info:pmid/34648110&rft_galeid=A679537570&rft_doaj_id=oai_doaj_org_article_2f34c10aeb634c0e8a8b9a05e8fb6d16&rfr_iscdi=true |