Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis
Both substrate stiffness and surface topography regulate cell behavior through mechanotransduction signaling pathways. Such intertwined effects suggest that engineered surface topographies might substitute or cancel the effects of substrate stiffness in biomedical applications. However, the mechanis...
Gespeichert in:
Veröffentlicht in: | Nano letters 2021-10, Vol.21 (19), p.8518-8526 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8526 |
---|---|
container_issue | 19 |
container_start_page | 8518 |
container_title | Nano letters |
container_volume | 21 |
creator | Li, Xiao Klausen, Lasse H. Zhang, Wei Jahed, Zeinab Tsai, Ching-Ting Li, Thomas L. Cui, Bianxiao |
description | Both substrate stiffness and surface topography regulate cell behavior through mechanotransduction signaling pathways. Such intertwined effects suggest that engineered surface topographies might substitute or cancel the effects of substrate stiffness in biomedical applications. However, the mechanisms by which cells recognize topographical features are not fully understood. Here we demonstrate that the presence of nanotopography drastically alters cell behavior such that neurons and stem cells cultured on rigid glass substrates behave as if they were on soft hydrogels. With atomic force microscopy, we show that rigid nanotopography resembles the effects of soft hydrogels in reducing cell stiffness and membrane tension. Further, we reveal that nanotopography reduces focal adhesions and cell stiffness by enhancing the endocytosis and the subsequent removal of integrin receptors. This mechanistic understanding will support the rational design of nanotopography that directs cells on rigid materials to behave as if they were on soft ones. |
doi_str_mv | 10.1021/acs.nanolett.1c01934 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8516714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558089608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-9d2aad4d0a50b3571c2635a2043789ec5e282e2ad09429c113a80541113bcd473</originalsourceid><addsrcrecordid>eNpVkU1rGzEQhkVpaNIk_6AHHXuxq8-1dCkEk7SB0EKSnsVYmrVV1pKr2S3433dL3EBPM8y8PMPwMPZBiqUUSn6CSMsCpQ44jksZhfTavGEX0mqx6LxXb197Z87Ze6KfQgivrXjHzrXRplNKXLD8bUZQhAH509R6iMif66FuGxx2R_6IaYpI_K7OCX6Tdki5FuJQEl_jMPCnMfd9QSK-OfLbsoMSc9ny-zLituUyj1KNx7FSpit21sNAeH2ql-zH3e3z-uvi4fuX-_XNwyJqZ8eFTwogmSTAio22KxlVpy0oYfTKeYwWlVOoIAlvlI9SanDCGjk3m5jMSl-yzy_cw7TZY4pYxgZDOLS8h3YMFXL4f1PyLmzr7-Cs7FbSzICPJ0CrvyakMewzxflbKFgnCspaJ5zvhJuj5iUaWyVq2L-ekSL8tRRmS-GfpXCypP8AjZGJpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558089608</pqid></control><display><type>article</type><title>Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis</title><source>American Chemical Society Journals</source><creator>Li, Xiao ; Klausen, Lasse H. ; Zhang, Wei ; Jahed, Zeinab ; Tsai, Ching-Ting ; Li, Thomas L. ; Cui, Bianxiao</creator><creatorcontrib>Li, Xiao ; Klausen, Lasse H. ; Zhang, Wei ; Jahed, Zeinab ; Tsai, Ching-Ting ; Li, Thomas L. ; Cui, Bianxiao</creatorcontrib><description>Both substrate stiffness and surface topography regulate cell behavior through mechanotransduction signaling pathways. Such intertwined effects suggest that engineered surface topographies might substitute or cancel the effects of substrate stiffness in biomedical applications. However, the mechanisms by which cells recognize topographical features are not fully understood. Here we demonstrate that the presence of nanotopography drastically alters cell behavior such that neurons and stem cells cultured on rigid glass substrates behave as if they were on soft hydrogels. With atomic force microscopy, we show that rigid nanotopography resembles the effects of soft hydrogels in reducing cell stiffness and membrane tension. Further, we reveal that nanotopography reduces focal adhesions and cell stiffness by enhancing the endocytosis and the subsequent removal of integrin receptors. This mechanistic understanding will support the rational design of nanotopography that directs cells on rigid materials to behave as if they were on soft ones.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.1c01934</identifier><identifier>PMID: 34346220</identifier><language>eng</language><ispartof>Nano letters, 2021-10, Vol.21 (19), p.8518-8526</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-9d2aad4d0a50b3571c2635a2043789ec5e282e2ad09429c113a80541113bcd473</citedby><cites>FETCH-LOGICAL-c385t-9d2aad4d0a50b3571c2635a2043789ec5e282e2ad09429c113a80541113bcd473</cites><orcidid>0000-0002-8656-0679 ; 0000-0002-8044-5629 ; 0000-0003-3004-5958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2765,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Klausen, Lasse H.</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Jahed, Zeinab</creatorcontrib><creatorcontrib>Tsai, Ching-Ting</creatorcontrib><creatorcontrib>Li, Thomas L.</creatorcontrib><creatorcontrib>Cui, Bianxiao</creatorcontrib><title>Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis</title><title>Nano letters</title><description>Both substrate stiffness and surface topography regulate cell behavior through mechanotransduction signaling pathways. Such intertwined effects suggest that engineered surface topographies might substitute or cancel the effects of substrate stiffness in biomedical applications. However, the mechanisms by which cells recognize topographical features are not fully understood. Here we demonstrate that the presence of nanotopography drastically alters cell behavior such that neurons and stem cells cultured on rigid glass substrates behave as if they were on soft hydrogels. With atomic force microscopy, we show that rigid nanotopography resembles the effects of soft hydrogels in reducing cell stiffness and membrane tension. Further, we reveal that nanotopography reduces focal adhesions and cell stiffness by enhancing the endocytosis and the subsequent removal of integrin receptors. This mechanistic understanding will support the rational design of nanotopography that directs cells on rigid materials to behave as if they were on soft ones.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkU1rGzEQhkVpaNIk_6AHHXuxq8-1dCkEk7SB0EKSnsVYmrVV1pKr2S3433dL3EBPM8y8PMPwMPZBiqUUSn6CSMsCpQ44jksZhfTavGEX0mqx6LxXb197Z87Ze6KfQgivrXjHzrXRplNKXLD8bUZQhAH509R6iMif66FuGxx2R_6IaYpI_K7OCX6Tdki5FuJQEl_jMPCnMfd9QSK-OfLbsoMSc9ny-zLituUyj1KNx7FSpit21sNAeH2ql-zH3e3z-uvi4fuX-_XNwyJqZ8eFTwogmSTAio22KxlVpy0oYfTKeYwWlVOoIAlvlI9SanDCGjk3m5jMSl-yzy_cw7TZY4pYxgZDOLS8h3YMFXL4f1PyLmzr7-Cs7FbSzICPJ0CrvyakMewzxflbKFgnCspaJ5zvhJuj5iUaWyVq2L-ekSL8tRRmS-GfpXCypP8AjZGJpA</recordid><startdate>20211013</startdate><enddate>20211013</enddate><creator>Li, Xiao</creator><creator>Klausen, Lasse H.</creator><creator>Zhang, Wei</creator><creator>Jahed, Zeinab</creator><creator>Tsai, Ching-Ting</creator><creator>Li, Thomas L.</creator><creator>Cui, Bianxiao</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8656-0679</orcidid><orcidid>https://orcid.org/0000-0002-8044-5629</orcidid><orcidid>https://orcid.org/0000-0003-3004-5958</orcidid></search><sort><creationdate>20211013</creationdate><title>Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis</title><author>Li, Xiao ; Klausen, Lasse H. ; Zhang, Wei ; Jahed, Zeinab ; Tsai, Ching-Ting ; Li, Thomas L. ; Cui, Bianxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-9d2aad4d0a50b3571c2635a2043789ec5e282e2ad09429c113a80541113bcd473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Klausen, Lasse H.</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Jahed, Zeinab</creatorcontrib><creatorcontrib>Tsai, Ching-Ting</creatorcontrib><creatorcontrib>Li, Thomas L.</creatorcontrib><creatorcontrib>Cui, Bianxiao</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiao</au><au>Klausen, Lasse H.</au><au>Zhang, Wei</au><au>Jahed, Zeinab</au><au>Tsai, Ching-Ting</au><au>Li, Thomas L.</au><au>Cui, Bianxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis</atitle><jtitle>Nano letters</jtitle><date>2021-10-13</date><risdate>2021</risdate><volume>21</volume><issue>19</issue><spage>8518</spage><epage>8526</epage><pages>8518-8526</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Both substrate stiffness and surface topography regulate cell behavior through mechanotransduction signaling pathways. Such intertwined effects suggest that engineered surface topographies might substitute or cancel the effects of substrate stiffness in biomedical applications. However, the mechanisms by which cells recognize topographical features are not fully understood. Here we demonstrate that the presence of nanotopography drastically alters cell behavior such that neurons and stem cells cultured on rigid glass substrates behave as if they were on soft hydrogels. With atomic force microscopy, we show that rigid nanotopography resembles the effects of soft hydrogels in reducing cell stiffness and membrane tension. Further, we reveal that nanotopography reduces focal adhesions and cell stiffness by enhancing the endocytosis and the subsequent removal of integrin receptors. This mechanistic understanding will support the rational design of nanotopography that directs cells on rigid materials to behave as if they were on soft ones.</abstract><pmid>34346220</pmid><doi>10.1021/acs.nanolett.1c01934</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8656-0679</orcidid><orcidid>https://orcid.org/0000-0002-8044-5629</orcidid><orcidid>https://orcid.org/0000-0003-3004-5958</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2021-10, Vol.21 (19), p.8518-8526 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8516714 |
source | American Chemical Society Journals |
title | Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Surface%20Topography%20Reduces%20Focal%20Adhesions%20and%20Cell%20Stiffness%20by%20Enhancing%20Integrin%20Endocytosis&rft.jtitle=Nano%20letters&rft.au=Li,%20Xiao&rft.date=2021-10-13&rft.volume=21&rft.issue=19&rft.spage=8518&rft.epage=8526&rft.pages=8518-8526&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.1c01934&rft_dat=%3Cproquest_pubme%3E2558089608%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558089608&rft_id=info:pmid/34346220&rfr_iscdi=true |