Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis

Both substrate stiffness and surface topography regulate cell behavior through mechanotransduction signaling pathways. Such intertwined effects suggest that engineered surface topographies might substitute or cancel the effects of substrate stiffness in biomedical applications. However, the mechanis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2021-10, Vol.21 (19), p.8518-8526
Hauptverfasser: Li, Xiao, Klausen, Lasse H., Zhang, Wei, Jahed, Zeinab, Tsai, Ching-Ting, Li, Thomas L., Cui, Bianxiao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8526
container_issue 19
container_start_page 8518
container_title Nano letters
container_volume 21
creator Li, Xiao
Klausen, Lasse H.
Zhang, Wei
Jahed, Zeinab
Tsai, Ching-Ting
Li, Thomas L.
Cui, Bianxiao
description Both substrate stiffness and surface topography regulate cell behavior through mechanotransduction signaling pathways. Such intertwined effects suggest that engineered surface topographies might substitute or cancel the effects of substrate stiffness in biomedical applications. However, the mechanisms by which cells recognize topographical features are not fully understood. Here we demonstrate that the presence of nanotopography drastically alters cell behavior such that neurons and stem cells cultured on rigid glass substrates behave as if they were on soft hydrogels. With atomic force microscopy, we show that rigid nanotopography resembles the effects of soft hydrogels in reducing cell stiffness and membrane tension. Further, we reveal that nanotopography reduces focal adhesions and cell stiffness by enhancing the endocytosis and the subsequent removal of integrin receptors. This mechanistic understanding will support the rational design of nanotopography that directs cells on rigid materials to behave as if they were on soft ones.
doi_str_mv 10.1021/acs.nanolett.1c01934
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8516714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558089608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-9d2aad4d0a50b3571c2635a2043789ec5e282e2ad09429c113a80541113bcd473</originalsourceid><addsrcrecordid>eNpVkU1rGzEQhkVpaNIk_6AHHXuxq8-1dCkEk7SB0EKSnsVYmrVV1pKr2S3433dL3EBPM8y8PMPwMPZBiqUUSn6CSMsCpQ44jksZhfTavGEX0mqx6LxXb197Z87Ze6KfQgivrXjHzrXRplNKXLD8bUZQhAH509R6iMif66FuGxx2R_6IaYpI_K7OCX6Tdki5FuJQEl_jMPCnMfd9QSK-OfLbsoMSc9ny-zLituUyj1KNx7FSpit21sNAeH2ql-zH3e3z-uvi4fuX-_XNwyJqZ8eFTwogmSTAio22KxlVpy0oYfTKeYwWlVOoIAlvlI9SanDCGjk3m5jMSl-yzy_cw7TZY4pYxgZDOLS8h3YMFXL4f1PyLmzr7-Cs7FbSzICPJ0CrvyakMewzxflbKFgnCspaJ5zvhJuj5iUaWyVq2L-ekSL8tRRmS-GfpXCypP8AjZGJpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558089608</pqid></control><display><type>article</type><title>Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis</title><source>American Chemical Society Journals</source><creator>Li, Xiao ; Klausen, Lasse H. ; Zhang, Wei ; Jahed, Zeinab ; Tsai, Ching-Ting ; Li, Thomas L. ; Cui, Bianxiao</creator><creatorcontrib>Li, Xiao ; Klausen, Lasse H. ; Zhang, Wei ; Jahed, Zeinab ; Tsai, Ching-Ting ; Li, Thomas L. ; Cui, Bianxiao</creatorcontrib><description>Both substrate stiffness and surface topography regulate cell behavior through mechanotransduction signaling pathways. Such intertwined effects suggest that engineered surface topographies might substitute or cancel the effects of substrate stiffness in biomedical applications. However, the mechanisms by which cells recognize topographical features are not fully understood. Here we demonstrate that the presence of nanotopography drastically alters cell behavior such that neurons and stem cells cultured on rigid glass substrates behave as if they were on soft hydrogels. With atomic force microscopy, we show that rigid nanotopography resembles the effects of soft hydrogels in reducing cell stiffness and membrane tension. Further, we reveal that nanotopography reduces focal adhesions and cell stiffness by enhancing the endocytosis and the subsequent removal of integrin receptors. This mechanistic understanding will support the rational design of nanotopography that directs cells on rigid materials to behave as if they were on soft ones.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.1c01934</identifier><identifier>PMID: 34346220</identifier><language>eng</language><ispartof>Nano letters, 2021-10, Vol.21 (19), p.8518-8526</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-9d2aad4d0a50b3571c2635a2043789ec5e282e2ad09429c113a80541113bcd473</citedby><cites>FETCH-LOGICAL-c385t-9d2aad4d0a50b3571c2635a2043789ec5e282e2ad09429c113a80541113bcd473</cites><orcidid>0000-0002-8656-0679 ; 0000-0002-8044-5629 ; 0000-0003-3004-5958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2765,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Klausen, Lasse H.</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Jahed, Zeinab</creatorcontrib><creatorcontrib>Tsai, Ching-Ting</creatorcontrib><creatorcontrib>Li, Thomas L.</creatorcontrib><creatorcontrib>Cui, Bianxiao</creatorcontrib><title>Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis</title><title>Nano letters</title><description>Both substrate stiffness and surface topography regulate cell behavior through mechanotransduction signaling pathways. Such intertwined effects suggest that engineered surface topographies might substitute or cancel the effects of substrate stiffness in biomedical applications. However, the mechanisms by which cells recognize topographical features are not fully understood. Here we demonstrate that the presence of nanotopography drastically alters cell behavior such that neurons and stem cells cultured on rigid glass substrates behave as if they were on soft hydrogels. With atomic force microscopy, we show that rigid nanotopography resembles the effects of soft hydrogels in reducing cell stiffness and membrane tension. Further, we reveal that nanotopography reduces focal adhesions and cell stiffness by enhancing the endocytosis and the subsequent removal of integrin receptors. This mechanistic understanding will support the rational design of nanotopography that directs cells on rigid materials to behave as if they were on soft ones.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkU1rGzEQhkVpaNIk_6AHHXuxq8-1dCkEk7SB0EKSnsVYmrVV1pKr2S3433dL3EBPM8y8PMPwMPZBiqUUSn6CSMsCpQ44jksZhfTavGEX0mqx6LxXb197Z87Ze6KfQgivrXjHzrXRplNKXLD8bUZQhAH509R6iMif66FuGxx2R_6IaYpI_K7OCX6Tdki5FuJQEl_jMPCnMfd9QSK-OfLbsoMSc9ny-zLituUyj1KNx7FSpit21sNAeH2ql-zH3e3z-uvi4fuX-_XNwyJqZ8eFTwogmSTAio22KxlVpy0oYfTKeYwWlVOoIAlvlI9SanDCGjk3m5jMSl-yzy_cw7TZY4pYxgZDOLS8h3YMFXL4f1PyLmzr7-Cs7FbSzICPJ0CrvyakMewzxflbKFgnCspaJ5zvhJuj5iUaWyVq2L-ekSL8tRRmS-GfpXCypP8AjZGJpA</recordid><startdate>20211013</startdate><enddate>20211013</enddate><creator>Li, Xiao</creator><creator>Klausen, Lasse H.</creator><creator>Zhang, Wei</creator><creator>Jahed, Zeinab</creator><creator>Tsai, Ching-Ting</creator><creator>Li, Thomas L.</creator><creator>Cui, Bianxiao</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8656-0679</orcidid><orcidid>https://orcid.org/0000-0002-8044-5629</orcidid><orcidid>https://orcid.org/0000-0003-3004-5958</orcidid></search><sort><creationdate>20211013</creationdate><title>Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis</title><author>Li, Xiao ; Klausen, Lasse H. ; Zhang, Wei ; Jahed, Zeinab ; Tsai, Ching-Ting ; Li, Thomas L. ; Cui, Bianxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-9d2aad4d0a50b3571c2635a2043789ec5e282e2ad09429c113a80541113bcd473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Klausen, Lasse H.</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Jahed, Zeinab</creatorcontrib><creatorcontrib>Tsai, Ching-Ting</creatorcontrib><creatorcontrib>Li, Thomas L.</creatorcontrib><creatorcontrib>Cui, Bianxiao</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiao</au><au>Klausen, Lasse H.</au><au>Zhang, Wei</au><au>Jahed, Zeinab</au><au>Tsai, Ching-Ting</au><au>Li, Thomas L.</au><au>Cui, Bianxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis</atitle><jtitle>Nano letters</jtitle><date>2021-10-13</date><risdate>2021</risdate><volume>21</volume><issue>19</issue><spage>8518</spage><epage>8526</epage><pages>8518-8526</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Both substrate stiffness and surface topography regulate cell behavior through mechanotransduction signaling pathways. Such intertwined effects suggest that engineered surface topographies might substitute or cancel the effects of substrate stiffness in biomedical applications. However, the mechanisms by which cells recognize topographical features are not fully understood. Here we demonstrate that the presence of nanotopography drastically alters cell behavior such that neurons and stem cells cultured on rigid glass substrates behave as if they were on soft hydrogels. With atomic force microscopy, we show that rigid nanotopography resembles the effects of soft hydrogels in reducing cell stiffness and membrane tension. Further, we reveal that nanotopography reduces focal adhesions and cell stiffness by enhancing the endocytosis and the subsequent removal of integrin receptors. This mechanistic understanding will support the rational design of nanotopography that directs cells on rigid materials to behave as if they were on soft ones.</abstract><pmid>34346220</pmid><doi>10.1021/acs.nanolett.1c01934</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8656-0679</orcidid><orcidid>https://orcid.org/0000-0002-8044-5629</orcidid><orcidid>https://orcid.org/0000-0003-3004-5958</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2021-10, Vol.21 (19), p.8518-8526
issn 1530-6984
1530-6992
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8516714
source American Chemical Society Journals
title Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Surface%20Topography%20Reduces%20Focal%20Adhesions%20and%20Cell%20Stiffness%20by%20Enhancing%20Integrin%20Endocytosis&rft.jtitle=Nano%20letters&rft.au=Li,%20Xiao&rft.date=2021-10-13&rft.volume=21&rft.issue=19&rft.spage=8518&rft.epage=8526&rft.pages=8518-8526&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.1c01934&rft_dat=%3Cproquest_pubme%3E2558089608%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558089608&rft_id=info:pmid/34346220&rfr_iscdi=true