In Vivo Magnetic Resonance Spectroscopy of Hyperpolarized [1‐13C]Pyruvate and Proton Density Fat Fraction in a Guinea Pig Model of Non‐Alcoholic Fatty Liver Disease Development After Life‐Long Western Diet Consumption
Background Alterations in glycolysis are central to the increasing incidence of non‐alcoholic fatty liver disease (NAFLD), highlighting a need for in vivo, non‐invasive technologies to understand the development of hepatic metabolic aberrations. Purpose To use hyperpolarized magnetic resonance spect...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance imaging 2021-11, Vol.54 (5), p.1404-1414 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1414 |
---|---|
container_issue | 5 |
container_start_page | 1404 |
container_title | Journal of magnetic resonance imaging |
container_volume | 54 |
creator | Smith, Lauren M. Pitts, Conrad B. Friesen‐Waldner, Lanette J. Prabhu, Neetin H. Mathers, Katherine E. Sinclair, Kevin J. Wade, Trevor P. Regnault, Timothy R.H. McKenzie, Charles A. |
description | Background
Alterations in glycolysis are central to the increasing incidence of non‐alcoholic fatty liver disease (NAFLD), highlighting a need for in vivo, non‐invasive technologies to understand the development of hepatic metabolic aberrations.
Purpose
To use hyperpolarized magnetic resonance spectroscopy (MRS) and proton density fat fraction (PDFF) magnetic resonance imaging (MRI) techniques to investigate the effects of a chronic, life‐long exposure to the Western diet (WD) in an animal model resulting in NAFLD; to investigate the hypothesis that exposure to the WD will result in NAFLD in association with altered pyruvate metabolism.
Study Type
Prospective.
Animal Model
Twenty‐eight male guinea pigs weaned onto a control diet (N = 14) or WD (N = 14).
Field Strength/Sequence
3 T; T1‐weighted gradient echo, T2‐weighted spin‐echo, three‐dimensional gradient multi‐echo fat‐water separation (IDEAL‐IQ), and broadband point‐resolved spectroscopy (PRESS) chemical‐shift sequences.
Assessment
Median PDFF was calculated in the liver and hind limbs. [1‐13C]pyruvate dynamic MRS in the liver was quantified by the time‐to‐peak (TTP) for each metabolite. Animals were euthanized and tissue was analyzed for lipid and cholesterol concentration and enzyme level and activity.
Statistical Tests
Unpaired Student's t‐tests were used to determine differences in measurements between the two diet groups. The Pearson correlation coefficient was calculated to determine correlations between measurements.
Results
Life‐long WD consumption resulted in significantly higher liver PDFF and elevated triglyceride content in the liver. The WD group exhibited a decreased TTP for lactate production, and ex vivo analysis highlighted increased liver lactate dehydrogenase (LDH) activity.
Data Conclusion
PDFF MRI results suggest differential fat deposition patterns occurring in animals fed a life‐long WD characteristic of lean, or lacking excessive subcutaneous fat, NAFLD. The decreased liver lactate TTP and increased ex vivo LDH activity suggest lipid accumulation occurs in association with a shift from oxidative metabolism to anaerobic glycolytic metabolism in WD‐exposed livers.
Level of Evidence
2
Technical Efficacy Stage
1 |
doi_str_mv | 10.1002/jmri.27677 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8516663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581129588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4487-1bf26a4e4ddf9d8b55e2a03247daa75b07ed94316604b90d63f84068978451523</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEoqVw4QGQJS4V0hbbiRPngrTasu2iXViVfweELG8y2XqV2MFOtkpPPAJviMSTMMuWCjhwsuX55jffeCaKHjN6wijlzzeNNyc8S7PsTnTIBOcjLmR6F-9UxCMmaXYQPQhhQynN80Tcjw7iOM-o4PQw-j6z5IPZOrLQawudKcgFBGe1LYC8baHovAuFawfiKnI-tOBbV2tvrqEkn9iPr99YPPm8HHy_1R0QbUuy9K5zlpyCDaYbyFR3ZOp10Rl8NJZoctYbC5oszZosXAn1jvzaWWSN68Jduho9YBbmzs0WPDk1AXQAJG6hdm0DtiPjqsPI3FSAaXNn1-QjBHzCugY6MnE29E27q_kwulfpOsCjm_Moej99-W5yPpq_OZtNxvNRkSQyG7FVxVOdQFKWVV7KlRDANY15kpVaZ2JFMyjzJGZpSpNVTss0rmRCU5lnMhH45fFR9GLPbftVA2WBLr2uVetNo_2gnDbq74g1l2rttkoKhKYxAo5vAN596bEb1ZhQQF1rC64PigueSBxluqv19B_pxvXeYnuokozxXEiJqmd7VYEjDB6qWzOMqt3eqN3eqF97g-Inf9q_lf5eFBSwveDK1DD8B6VeLS5me-hPDDHUJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581129588</pqid></control><display><type>article</type><title>In Vivo Magnetic Resonance Spectroscopy of Hyperpolarized [1‐13C]Pyruvate and Proton Density Fat Fraction in a Guinea Pig Model of Non‐Alcoholic Fatty Liver Disease Development After Life‐Long Western Diet Consumption</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Smith, Lauren M. ; Pitts, Conrad B. ; Friesen‐Waldner, Lanette J. ; Prabhu, Neetin H. ; Mathers, Katherine E. ; Sinclair, Kevin J. ; Wade, Trevor P. ; Regnault, Timothy R.H. ; McKenzie, Charles A.</creator><creatorcontrib>Smith, Lauren M. ; Pitts, Conrad B. ; Friesen‐Waldner, Lanette J. ; Prabhu, Neetin H. ; Mathers, Katherine E. ; Sinclair, Kevin J. ; Wade, Trevor P. ; Regnault, Timothy R.H. ; McKenzie, Charles A.</creatorcontrib><description>Background
Alterations in glycolysis are central to the increasing incidence of non‐alcoholic fatty liver disease (NAFLD), highlighting a need for in vivo, non‐invasive technologies to understand the development of hepatic metabolic aberrations.
Purpose
To use hyperpolarized magnetic resonance spectroscopy (MRS) and proton density fat fraction (PDFF) magnetic resonance imaging (MRI) techniques to investigate the effects of a chronic, life‐long exposure to the Western diet (WD) in an animal model resulting in NAFLD; to investigate the hypothesis that exposure to the WD will result in NAFLD in association with altered pyruvate metabolism.
Study Type
Prospective.
Animal Model
Twenty‐eight male guinea pigs weaned onto a control diet (N = 14) or WD (N = 14).
Field Strength/Sequence
3 T; T1‐weighted gradient echo, T2‐weighted spin‐echo, three‐dimensional gradient multi‐echo fat‐water separation (IDEAL‐IQ), and broadband point‐resolved spectroscopy (PRESS) chemical‐shift sequences.
Assessment
Median PDFF was calculated in the liver and hind limbs. [1‐13C]pyruvate dynamic MRS in the liver was quantified by the time‐to‐peak (TTP) for each metabolite. Animals were euthanized and tissue was analyzed for lipid and cholesterol concentration and enzyme level and activity.
Statistical Tests
Unpaired Student's t‐tests were used to determine differences in measurements between the two diet groups. The Pearson correlation coefficient was calculated to determine correlations between measurements.
Results
Life‐long WD consumption resulted in significantly higher liver PDFF and elevated triglyceride content in the liver. The WD group exhibited a decreased TTP for lactate production, and ex vivo analysis highlighted increased liver lactate dehydrogenase (LDH) activity.
Data Conclusion
PDFF MRI results suggest differential fat deposition patterns occurring in animals fed a life‐long WD characteristic of lean, or lacking excessive subcutaneous fat, NAFLD. The decreased liver lactate TTP and increased ex vivo LDH activity suggest lipid accumulation occurs in association with a shift from oxidative metabolism to anaerobic glycolytic metabolism in WD‐exposed livers.
Level of Evidence
2
Technical Efficacy Stage
1</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.27677</identifier><identifier>PMID: 33970520</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animal models ; Animal tissues ; Animals ; Broadband ; carbon‐13 ; Cholesterol ; Consumption ; Correlation coefficient ; Correlation coefficients ; Diet ; Exposure ; Fatty liver ; Field strength ; Glycolysis ; Guinea pigs ; hyperpolarized MRS ; In vivo methods and tests ; L-Lactate dehydrogenase ; Lactate dehydrogenase ; Lactic acid ; Lipids ; Liver ; Liver diseases ; Magnetic resonance imaging ; Magnetic resonance spectroscopy ; Metabolism ; Metabolites ; NAFLD ; Oxidative metabolism ; Proton density (concentration) ; pyruvate ; Pyruvic acid ; Resonance ; Spectroscopy ; Spectrum analysis ; Statistical analysis ; Statistical tests ; Triglycerides</subject><ispartof>Journal of magnetic resonance imaging, 2021-11, Vol.54 (5), p.1404-1414</ispartof><rights>2021 International Society for Magnetic Resonance in Medicine</rights><rights>2021 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4487-1bf26a4e4ddf9d8b55e2a03247daa75b07ed94316604b90d63f84068978451523</citedby><cites>FETCH-LOGICAL-c4487-1bf26a4e4ddf9d8b55e2a03247daa75b07ed94316604b90d63f84068978451523</cites><orcidid>0000-0002-9614-1582 ; 0000-0002-5585-966X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.27677$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.27677$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33970520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Lauren M.</creatorcontrib><creatorcontrib>Pitts, Conrad B.</creatorcontrib><creatorcontrib>Friesen‐Waldner, Lanette J.</creatorcontrib><creatorcontrib>Prabhu, Neetin H.</creatorcontrib><creatorcontrib>Mathers, Katherine E.</creatorcontrib><creatorcontrib>Sinclair, Kevin J.</creatorcontrib><creatorcontrib>Wade, Trevor P.</creatorcontrib><creatorcontrib>Regnault, Timothy R.H.</creatorcontrib><creatorcontrib>McKenzie, Charles A.</creatorcontrib><title>In Vivo Magnetic Resonance Spectroscopy of Hyperpolarized [1‐13C]Pyruvate and Proton Density Fat Fraction in a Guinea Pig Model of Non‐Alcoholic Fatty Liver Disease Development After Life‐Long Western Diet Consumption</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background
Alterations in glycolysis are central to the increasing incidence of non‐alcoholic fatty liver disease (NAFLD), highlighting a need for in vivo, non‐invasive technologies to understand the development of hepatic metabolic aberrations.
Purpose
To use hyperpolarized magnetic resonance spectroscopy (MRS) and proton density fat fraction (PDFF) magnetic resonance imaging (MRI) techniques to investigate the effects of a chronic, life‐long exposure to the Western diet (WD) in an animal model resulting in NAFLD; to investigate the hypothesis that exposure to the WD will result in NAFLD in association with altered pyruvate metabolism.
Study Type
Prospective.
Animal Model
Twenty‐eight male guinea pigs weaned onto a control diet (N = 14) or WD (N = 14).
Field Strength/Sequence
3 T; T1‐weighted gradient echo, T2‐weighted spin‐echo, three‐dimensional gradient multi‐echo fat‐water separation (IDEAL‐IQ), and broadband point‐resolved spectroscopy (PRESS) chemical‐shift sequences.
Assessment
Median PDFF was calculated in the liver and hind limbs. [1‐13C]pyruvate dynamic MRS in the liver was quantified by the time‐to‐peak (TTP) for each metabolite. Animals were euthanized and tissue was analyzed for lipid and cholesterol concentration and enzyme level and activity.
Statistical Tests
Unpaired Student's t‐tests were used to determine differences in measurements between the two diet groups. The Pearson correlation coefficient was calculated to determine correlations between measurements.
Results
Life‐long WD consumption resulted in significantly higher liver PDFF and elevated triglyceride content in the liver. The WD group exhibited a decreased TTP for lactate production, and ex vivo analysis highlighted increased liver lactate dehydrogenase (LDH) activity.
Data Conclusion
PDFF MRI results suggest differential fat deposition patterns occurring in animals fed a life‐long WD characteristic of lean, or lacking excessive subcutaneous fat, NAFLD. The decreased liver lactate TTP and increased ex vivo LDH activity suggest lipid accumulation occurs in association with a shift from oxidative metabolism to anaerobic glycolytic metabolism in WD‐exposed livers.
Level of Evidence
2
Technical Efficacy Stage
1</description><subject>Animal models</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Broadband</subject><subject>carbon‐13</subject><subject>Cholesterol</subject><subject>Consumption</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Diet</subject><subject>Exposure</subject><subject>Fatty liver</subject><subject>Field strength</subject><subject>Glycolysis</subject><subject>Guinea pigs</subject><subject>hyperpolarized MRS</subject><subject>In vivo methods and tests</subject><subject>L-Lactate dehydrogenase</subject><subject>Lactate dehydrogenase</subject><subject>Lactic acid</subject><subject>Lipids</subject><subject>Liver</subject><subject>Liver diseases</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic resonance spectroscopy</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>NAFLD</subject><subject>Oxidative metabolism</subject><subject>Proton density (concentration)</subject><subject>pyruvate</subject><subject>Pyruvic acid</subject><subject>Resonance</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Triglycerides</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9ks9u1DAQxiMEoqVw4QGQJS4V0hbbiRPngrTasu2iXViVfweELG8y2XqV2MFOtkpPPAJviMSTMMuWCjhwsuX55jffeCaKHjN6wijlzzeNNyc8S7PsTnTIBOcjLmR6F-9UxCMmaXYQPQhhQynN80Tcjw7iOM-o4PQw-j6z5IPZOrLQawudKcgFBGe1LYC8baHovAuFawfiKnI-tOBbV2tvrqEkn9iPr99YPPm8HHy_1R0QbUuy9K5zlpyCDaYbyFR3ZOp10Rl8NJZoctYbC5oszZosXAn1jvzaWWSN68Jduho9YBbmzs0WPDk1AXQAJG6hdm0DtiPjqsPI3FSAaXNn1-QjBHzCugY6MnE29E27q_kwulfpOsCjm_Moej99-W5yPpq_OZtNxvNRkSQyG7FVxVOdQFKWVV7KlRDANY15kpVaZ2JFMyjzJGZpSpNVTss0rmRCU5lnMhH45fFR9GLPbftVA2WBLr2uVetNo_2gnDbq74g1l2rttkoKhKYxAo5vAN596bEb1ZhQQF1rC64PigueSBxluqv19B_pxvXeYnuokozxXEiJqmd7VYEjDB6qWzOMqt3eqN3eqF97g-Inf9q_lf5eFBSwveDK1DD8B6VeLS5me-hPDDHUJw</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Smith, Lauren M.</creator><creator>Pitts, Conrad B.</creator><creator>Friesen‐Waldner, Lanette J.</creator><creator>Prabhu, Neetin H.</creator><creator>Mathers, Katherine E.</creator><creator>Sinclair, Kevin J.</creator><creator>Wade, Trevor P.</creator><creator>Regnault, Timothy R.H.</creator><creator>McKenzie, Charles A.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9614-1582</orcidid><orcidid>https://orcid.org/0000-0002-5585-966X</orcidid></search><sort><creationdate>202111</creationdate><title>In Vivo Magnetic Resonance Spectroscopy of Hyperpolarized [1‐13C]Pyruvate and Proton Density Fat Fraction in a Guinea Pig Model of Non‐Alcoholic Fatty Liver Disease Development After Life‐Long Western Diet Consumption</title><author>Smith, Lauren M. ; Pitts, Conrad B. ; Friesen‐Waldner, Lanette J. ; Prabhu, Neetin H. ; Mathers, Katherine E. ; Sinclair, Kevin J. ; Wade, Trevor P. ; Regnault, Timothy R.H. ; McKenzie, Charles A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4487-1bf26a4e4ddf9d8b55e2a03247daa75b07ed94316604b90d63f84068978451523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Broadband</topic><topic>carbon‐13</topic><topic>Cholesterol</topic><topic>Consumption</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Diet</topic><topic>Exposure</topic><topic>Fatty liver</topic><topic>Field strength</topic><topic>Glycolysis</topic><topic>Guinea pigs</topic><topic>hyperpolarized MRS</topic><topic>In vivo methods and tests</topic><topic>L-Lactate dehydrogenase</topic><topic>Lactate dehydrogenase</topic><topic>Lactic acid</topic><topic>Lipids</topic><topic>Liver</topic><topic>Liver diseases</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic resonance spectroscopy</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>NAFLD</topic><topic>Oxidative metabolism</topic><topic>Proton density (concentration)</topic><topic>pyruvate</topic><topic>Pyruvic acid</topic><topic>Resonance</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Lauren M.</creatorcontrib><creatorcontrib>Pitts, Conrad B.</creatorcontrib><creatorcontrib>Friesen‐Waldner, Lanette J.</creatorcontrib><creatorcontrib>Prabhu, Neetin H.</creatorcontrib><creatorcontrib>Mathers, Katherine E.</creatorcontrib><creatorcontrib>Sinclair, Kevin J.</creatorcontrib><creatorcontrib>Wade, Trevor P.</creatorcontrib><creatorcontrib>Regnault, Timothy R.H.</creatorcontrib><creatorcontrib>McKenzie, Charles A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Lauren M.</au><au>Pitts, Conrad B.</au><au>Friesen‐Waldner, Lanette J.</au><au>Prabhu, Neetin H.</au><au>Mathers, Katherine E.</au><au>Sinclair, Kevin J.</au><au>Wade, Trevor P.</au><au>Regnault, Timothy R.H.</au><au>McKenzie, Charles A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vivo Magnetic Resonance Spectroscopy of Hyperpolarized [1‐13C]Pyruvate and Proton Density Fat Fraction in a Guinea Pig Model of Non‐Alcoholic Fatty Liver Disease Development After Life‐Long Western Diet Consumption</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2021-11</date><risdate>2021</risdate><volume>54</volume><issue>5</issue><spage>1404</spage><epage>1414</epage><pages>1404-1414</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background
Alterations in glycolysis are central to the increasing incidence of non‐alcoholic fatty liver disease (NAFLD), highlighting a need for in vivo, non‐invasive technologies to understand the development of hepatic metabolic aberrations.
Purpose
To use hyperpolarized magnetic resonance spectroscopy (MRS) and proton density fat fraction (PDFF) magnetic resonance imaging (MRI) techniques to investigate the effects of a chronic, life‐long exposure to the Western diet (WD) in an animal model resulting in NAFLD; to investigate the hypothesis that exposure to the WD will result in NAFLD in association with altered pyruvate metabolism.
Study Type
Prospective.
Animal Model
Twenty‐eight male guinea pigs weaned onto a control diet (N = 14) or WD (N = 14).
Field Strength/Sequence
3 T; T1‐weighted gradient echo, T2‐weighted spin‐echo, three‐dimensional gradient multi‐echo fat‐water separation (IDEAL‐IQ), and broadband point‐resolved spectroscopy (PRESS) chemical‐shift sequences.
Assessment
Median PDFF was calculated in the liver and hind limbs. [1‐13C]pyruvate dynamic MRS in the liver was quantified by the time‐to‐peak (TTP) for each metabolite. Animals were euthanized and tissue was analyzed for lipid and cholesterol concentration and enzyme level and activity.
Statistical Tests
Unpaired Student's t‐tests were used to determine differences in measurements between the two diet groups. The Pearson correlation coefficient was calculated to determine correlations between measurements.
Results
Life‐long WD consumption resulted in significantly higher liver PDFF and elevated triglyceride content in the liver. The WD group exhibited a decreased TTP for lactate production, and ex vivo analysis highlighted increased liver lactate dehydrogenase (LDH) activity.
Data Conclusion
PDFF MRI results suggest differential fat deposition patterns occurring in animals fed a life‐long WD characteristic of lean, or lacking excessive subcutaneous fat, NAFLD. The decreased liver lactate TTP and increased ex vivo LDH activity suggest lipid accumulation occurs in association with a shift from oxidative metabolism to anaerobic glycolytic metabolism in WD‐exposed livers.
Level of Evidence
2
Technical Efficacy Stage
1</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>33970520</pmid><doi>10.1002/jmri.27677</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9614-1582</orcidid><orcidid>https://orcid.org/0000-0002-5585-966X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2021-11, Vol.54 (5), p.1404-1414 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8516663 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Animal models Animal tissues Animals Broadband carbon‐13 Cholesterol Consumption Correlation coefficient Correlation coefficients Diet Exposure Fatty liver Field strength Glycolysis Guinea pigs hyperpolarized MRS In vivo methods and tests L-Lactate dehydrogenase Lactate dehydrogenase Lactic acid Lipids Liver Liver diseases Magnetic resonance imaging Magnetic resonance spectroscopy Metabolism Metabolites NAFLD Oxidative metabolism Proton density (concentration) pyruvate Pyruvic acid Resonance Spectroscopy Spectrum analysis Statistical analysis Statistical tests Triglycerides |
title | In Vivo Magnetic Resonance Spectroscopy of Hyperpolarized [1‐13C]Pyruvate and Proton Density Fat Fraction in a Guinea Pig Model of Non‐Alcoholic Fatty Liver Disease Development After Life‐Long Western Diet Consumption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vivo%20Magnetic%20Resonance%20Spectroscopy%20of%20Hyperpolarized%20%5B1%E2%80%9013C%5DPyruvate%20and%20Proton%20Density%20Fat%20Fraction%20in%20a%20Guinea%20Pig%20Model%20of%20Non%E2%80%90Alcoholic%20Fatty%20Liver%20Disease%20Development%20After%20Life%E2%80%90Long%20Western%20Diet%20Consumption&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Smith,%20Lauren%20M.&rft.date=2021-11&rft.volume=54&rft.issue=5&rft.spage=1404&rft.epage=1414&rft.pages=1404-1414&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.27677&rft_dat=%3Cproquest_pubme%3E2581129588%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581129588&rft_id=info:pmid/33970520&rfr_iscdi=true |