Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment

Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expressio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2021-10, Vol.131 (20), p.1-17
Hauptverfasser: Su, Xinming, Xu, Yalin, Fox, Gregory C, Xiang, Jingyu, Kwakwa, Kristin A, Davis, Jennifer L, Belle, Jad I, Lee, Wen-Chih, Wong, Wing H, Fontana, Francesca, Hernandez-Aya, Leonel F, Kobayashi, Takayuki, Tomasson, Helen M, Su, Junyi, Bakewell, Suzanne J, Stewart, Sheila A, Egbulefu, Christopher, Karmakar, Partha, Meyer, Melisa A, Veis, Deborah J, DeNardo, David G, Lanza, Gregory M, Achilefu, Samuel, Weilbaecher, Katherine N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 20
container_start_page 1
container_title The Journal of clinical investigation
container_volume 131
creator Su, Xinming
Xu, Yalin
Fox, Gregory C
Xiang, Jingyu
Kwakwa, Kristin A
Davis, Jennifer L
Belle, Jad I
Lee, Wen-Chih
Wong, Wing H
Fontana, Francesca
Hernandez-Aya, Leonel F
Kobayashi, Takayuki
Tomasson, Helen M
Su, Junyi
Bakewell, Suzanne J
Stewart, Sheila A
Egbulefu, Christopher
Karmakar, Partha
Meyer, Melisa A
Veis, Deborah J
DeNardo, David G
Lanza, Gregory M
Achilefu, Samuel
Weilbaecher, Katherine N
description Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.
doi_str_mv 10.1172/JCI145296
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8516467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A680641824</galeid><sourcerecordid>A680641824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-aa014e518809d25da44a7bef5479b39e0e623cb7bb3dd72ec55c17c2a07c5f6c3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoh9w4A8gS0ioHFLirzi5IJUVLYuKKlHgajnOJOsqsYPtrOi_xyvKsov2gHywZT_zzoznzbIXuDjHWJC3nxZLzDipy0fZMea8yitCq8c756PsJIS7osCMcfY0O6KJLmhdHWfhvQcVItLKavB5C96soUVXn_PF7SXy0M-DihCQ8r2xKgDCyFg03sPgTIs0DENA0aHJu9FFQMoiM46zdWGeJg8hJDU0Gu0d2LXxzo5g47PsSaeGAM8f9tPs2-WHr4uP-fXN1XJxcZ3rshAxVyrVCxxXVVG3hLeKMSUa6DgTdUNrKKAkVDeiaWjbCgKac42FJqoQmnelpqfZu9-609yM0OqU2qtBTt6Myt9Lp4zcf7FmJXu3lhXHJStFEjh7EPDuxwwhytGETc_KgpuDJFyQmvK6pgl99Q9652ZvU3uJqgkVNavYX6pXA0hjO5fy6o2ovCiromS4IhsqP0D1YCEV6Sx0Jl3v8ecH-LRaSF9_MODNXkBiIvyMvZpDkMvbL__P3nzfZ1_vsCtQQ1wFN8zROBsOiiZjhOCh2w4FF3Jjabm1dGJf7k5xS_7xMP0FRYzuig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592379484</pqid></control><display><type>article</type><title>Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Su, Xinming ; Xu, Yalin ; Fox, Gregory C ; Xiang, Jingyu ; Kwakwa, Kristin A ; Davis, Jennifer L ; Belle, Jad I ; Lee, Wen-Chih ; Wong, Wing H ; Fontana, Francesca ; Hernandez-Aya, Leonel F ; Kobayashi, Takayuki ; Tomasson, Helen M ; Su, Junyi ; Bakewell, Suzanne J ; Stewart, Sheila A ; Egbulefu, Christopher ; Karmakar, Partha ; Meyer, Melisa A ; Veis, Deborah J ; DeNardo, David G ; Lanza, Gregory M ; Achilefu, Samuel ; Weilbaecher, Katherine N</creator><creatorcontrib>Su, Xinming ; Xu, Yalin ; Fox, Gregory C ; Xiang, Jingyu ; Kwakwa, Kristin A ; Davis, Jennifer L ; Belle, Jad I ; Lee, Wen-Chih ; Wong, Wing H ; Fontana, Francesca ; Hernandez-Aya, Leonel F ; Kobayashi, Takayuki ; Tomasson, Helen M ; Su, Junyi ; Bakewell, Suzanne J ; Stewart, Sheila A ; Egbulefu, Christopher ; Karmakar, Partha ; Meyer, Melisa A ; Veis, Deborah J ; DeNardo, David G ; Lanza, Gregory M ; Achilefu, Samuel ; Weilbaecher, Katherine N</creatorcontrib><description>Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.</description><identifier>ISSN: 1558-8238</identifier><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI145296</identifier><identifier>PMID: 34520398</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animal models ; Animals ; Arginase ; Arginase - physiology ; Arginine ; Biomarkers ; Biomedical research ; Bone marrow cells ; Breast cancer ; Breast Neoplasms - immunology ; Breast Neoplasms - pathology ; Cancer ; Cancer immunotherapy ; Care and treatment ; Cell Line, Tumor ; Cell therapy ; Cyclic AMP - physiology ; Development and progression ; Female ; Gene expression ; Genetic aspects ; Genotype &amp; phenotype ; Granulocyte-macrophage colony stimulating factor ; Granulocyte-Macrophage Colony-Stimulating Factor - physiology ; Granulocytes ; Health aspects ; Humans ; Immune checkpoint ; Immune Tolerance ; Immunotherapy ; Lung cancer ; Lymphocytes ; Lymphocytes T ; MAP kinase ; Medical prognosis ; Melanoma ; Metabolism ; Mice ; Mice, Inbred C57BL ; Myeloid cells ; Myeloid Cells - enzymology ; Oncology, Experimental ; Phenotypes ; Stat3 protein ; Stat6 protein ; T cell receptors ; Tumor Microenvironment ; Tumor-infiltrating lymphocytes ; Tumors</subject><ispartof>The Journal of clinical investigation, 2021-10, Vol.131 (20), p.1-17</ispartof><rights>COPYRIGHT 2021 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Oct 2021</rights><rights>2021 American Society for Clinical Investigation 2021 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-aa014e518809d25da44a7bef5479b39e0e623cb7bb3dd72ec55c17c2a07c5f6c3</citedby><cites>FETCH-LOGICAL-c607t-aa014e518809d25da44a7bef5479b39e0e623cb7bb3dd72ec55c17c2a07c5f6c3</cites><orcidid>0000-0001-7101-5582 ; 0000-0001-6436-731X ; 0000-0002-5889-9413 ; 0000-0002-3655-5783 ; 0000-0002-1060-3855 ; 0000-0003-0351-2928 ; 0000-0001-8944-9792 ; 0000-0001-5257-3247 ; 0000-0002-2260-9576 ; 0000-0002-4025-3091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516467/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516467/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34520398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Xinming</creatorcontrib><creatorcontrib>Xu, Yalin</creatorcontrib><creatorcontrib>Fox, Gregory C</creatorcontrib><creatorcontrib>Xiang, Jingyu</creatorcontrib><creatorcontrib>Kwakwa, Kristin A</creatorcontrib><creatorcontrib>Davis, Jennifer L</creatorcontrib><creatorcontrib>Belle, Jad I</creatorcontrib><creatorcontrib>Lee, Wen-Chih</creatorcontrib><creatorcontrib>Wong, Wing H</creatorcontrib><creatorcontrib>Fontana, Francesca</creatorcontrib><creatorcontrib>Hernandez-Aya, Leonel F</creatorcontrib><creatorcontrib>Kobayashi, Takayuki</creatorcontrib><creatorcontrib>Tomasson, Helen M</creatorcontrib><creatorcontrib>Su, Junyi</creatorcontrib><creatorcontrib>Bakewell, Suzanne J</creatorcontrib><creatorcontrib>Stewart, Sheila A</creatorcontrib><creatorcontrib>Egbulefu, Christopher</creatorcontrib><creatorcontrib>Karmakar, Partha</creatorcontrib><creatorcontrib>Meyer, Melisa A</creatorcontrib><creatorcontrib>Veis, Deborah J</creatorcontrib><creatorcontrib>DeNardo, David G</creatorcontrib><creatorcontrib>Lanza, Gregory M</creatorcontrib><creatorcontrib>Achilefu, Samuel</creatorcontrib><creatorcontrib>Weilbaecher, Katherine N</creatorcontrib><title>Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.</description><subject>Animal models</subject><subject>Animals</subject><subject>Arginase</subject><subject>Arginase - physiology</subject><subject>Arginine</subject><subject>Biomarkers</subject><subject>Biomedical research</subject><subject>Bone marrow cells</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - immunology</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>Care and treatment</subject><subject>Cell Line, Tumor</subject><subject>Cell therapy</subject><subject>Cyclic AMP - physiology</subject><subject>Development and progression</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genotype &amp; phenotype</subject><subject>Granulocyte-macrophage colony stimulating factor</subject><subject>Granulocyte-Macrophage Colony-Stimulating Factor - physiology</subject><subject>Granulocytes</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immune checkpoint</subject><subject>Immune Tolerance</subject><subject>Immunotherapy</subject><subject>Lung cancer</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>MAP kinase</subject><subject>Medical prognosis</subject><subject>Melanoma</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Myeloid cells</subject><subject>Myeloid Cells - enzymology</subject><subject>Oncology, Experimental</subject><subject>Phenotypes</subject><subject>Stat3 protein</subject><subject>Stat6 protein</subject><subject>T cell receptors</subject><subject>Tumor Microenvironment</subject><subject>Tumor-infiltrating lymphocytes</subject><subject>Tumors</subject><issn>1558-8238</issn><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk1v1DAQhiMEoh9w4A8gS0ioHFLirzi5IJUVLYuKKlHgajnOJOsqsYPtrOi_xyvKsov2gHywZT_zzoznzbIXuDjHWJC3nxZLzDipy0fZMea8yitCq8c756PsJIS7osCMcfY0O6KJLmhdHWfhvQcVItLKavB5C96soUVXn_PF7SXy0M-DihCQ8r2xKgDCyFg03sPgTIs0DENA0aHJu9FFQMoiM46zdWGeJg8hJDU0Gu0d2LXxzo5g47PsSaeGAM8f9tPs2-WHr4uP-fXN1XJxcZ3rshAxVyrVCxxXVVG3hLeKMSUa6DgTdUNrKKAkVDeiaWjbCgKac42FJqoQmnelpqfZu9-609yM0OqU2qtBTt6Myt9Lp4zcf7FmJXu3lhXHJStFEjh7EPDuxwwhytGETc_KgpuDJFyQmvK6pgl99Q9652ZvU3uJqgkVNavYX6pXA0hjO5fy6o2ovCiromS4IhsqP0D1YCEV6Sx0Jl3v8ecH-LRaSF9_MODNXkBiIvyMvZpDkMvbL__P3nzfZ1_vsCtQQ1wFN8zROBsOiiZjhOCh2w4FF3Jjabm1dGJf7k5xS_7xMP0FRYzuig</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Su, Xinming</creator><creator>Xu, Yalin</creator><creator>Fox, Gregory C</creator><creator>Xiang, Jingyu</creator><creator>Kwakwa, Kristin A</creator><creator>Davis, Jennifer L</creator><creator>Belle, Jad I</creator><creator>Lee, Wen-Chih</creator><creator>Wong, Wing H</creator><creator>Fontana, Francesca</creator><creator>Hernandez-Aya, Leonel F</creator><creator>Kobayashi, Takayuki</creator><creator>Tomasson, Helen M</creator><creator>Su, Junyi</creator><creator>Bakewell, Suzanne J</creator><creator>Stewart, Sheila A</creator><creator>Egbulefu, Christopher</creator><creator>Karmakar, Partha</creator><creator>Meyer, Melisa A</creator><creator>Veis, Deborah J</creator><creator>DeNardo, David G</creator><creator>Lanza, Gregory M</creator><creator>Achilefu, Samuel</creator><creator>Weilbaecher, Katherine N</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7101-5582</orcidid><orcidid>https://orcid.org/0000-0001-6436-731X</orcidid><orcidid>https://orcid.org/0000-0002-5889-9413</orcidid><orcidid>https://orcid.org/0000-0002-3655-5783</orcidid><orcidid>https://orcid.org/0000-0002-1060-3855</orcidid><orcidid>https://orcid.org/0000-0003-0351-2928</orcidid><orcidid>https://orcid.org/0000-0001-8944-9792</orcidid><orcidid>https://orcid.org/0000-0001-5257-3247</orcidid><orcidid>https://orcid.org/0000-0002-2260-9576</orcidid><orcidid>https://orcid.org/0000-0002-4025-3091</orcidid></search><sort><creationdate>20211015</creationdate><title>Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment</title><author>Su, Xinming ; Xu, Yalin ; Fox, Gregory C ; Xiang, Jingyu ; Kwakwa, Kristin A ; Davis, Jennifer L ; Belle, Jad I ; Lee, Wen-Chih ; Wong, Wing H ; Fontana, Francesca ; Hernandez-Aya, Leonel F ; Kobayashi, Takayuki ; Tomasson, Helen M ; Su, Junyi ; Bakewell, Suzanne J ; Stewart, Sheila A ; Egbulefu, Christopher ; Karmakar, Partha ; Meyer, Melisa A ; Veis, Deborah J ; DeNardo, David G ; Lanza, Gregory M ; Achilefu, Samuel ; Weilbaecher, Katherine N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-aa014e518809d25da44a7bef5479b39e0e623cb7bb3dd72ec55c17c2a07c5f6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Arginase</topic><topic>Arginase - physiology</topic><topic>Arginine</topic><topic>Biomarkers</topic><topic>Biomedical research</topic><topic>Bone marrow cells</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - immunology</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>Care and treatment</topic><topic>Cell Line, Tumor</topic><topic>Cell therapy</topic><topic>Cyclic AMP - physiology</topic><topic>Development and progression</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genotype &amp; phenotype</topic><topic>Granulocyte-macrophage colony stimulating factor</topic><topic>Granulocyte-Macrophage Colony-Stimulating Factor - physiology</topic><topic>Granulocytes</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immune checkpoint</topic><topic>Immune Tolerance</topic><topic>Immunotherapy</topic><topic>Lung cancer</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>MAP kinase</topic><topic>Medical prognosis</topic><topic>Melanoma</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Myeloid cells</topic><topic>Myeloid Cells - enzymology</topic><topic>Oncology, Experimental</topic><topic>Phenotypes</topic><topic>Stat3 protein</topic><topic>Stat6 protein</topic><topic>T cell receptors</topic><topic>Tumor Microenvironment</topic><topic>Tumor-infiltrating lymphocytes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Xinming</creatorcontrib><creatorcontrib>Xu, Yalin</creatorcontrib><creatorcontrib>Fox, Gregory C</creatorcontrib><creatorcontrib>Xiang, Jingyu</creatorcontrib><creatorcontrib>Kwakwa, Kristin A</creatorcontrib><creatorcontrib>Davis, Jennifer L</creatorcontrib><creatorcontrib>Belle, Jad I</creatorcontrib><creatorcontrib>Lee, Wen-Chih</creatorcontrib><creatorcontrib>Wong, Wing H</creatorcontrib><creatorcontrib>Fontana, Francesca</creatorcontrib><creatorcontrib>Hernandez-Aya, Leonel F</creatorcontrib><creatorcontrib>Kobayashi, Takayuki</creatorcontrib><creatorcontrib>Tomasson, Helen M</creatorcontrib><creatorcontrib>Su, Junyi</creatorcontrib><creatorcontrib>Bakewell, Suzanne J</creatorcontrib><creatorcontrib>Stewart, Sheila A</creatorcontrib><creatorcontrib>Egbulefu, Christopher</creatorcontrib><creatorcontrib>Karmakar, Partha</creatorcontrib><creatorcontrib>Meyer, Melisa A</creatorcontrib><creatorcontrib>Veis, Deborah J</creatorcontrib><creatorcontrib>DeNardo, David G</creatorcontrib><creatorcontrib>Lanza, Gregory M</creatorcontrib><creatorcontrib>Achilefu, Samuel</creatorcontrib><creatorcontrib>Weilbaecher, Katherine N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Xinming</au><au>Xu, Yalin</au><au>Fox, Gregory C</au><au>Xiang, Jingyu</au><au>Kwakwa, Kristin A</au><au>Davis, Jennifer L</au><au>Belle, Jad I</au><au>Lee, Wen-Chih</au><au>Wong, Wing H</au><au>Fontana, Francesca</au><au>Hernandez-Aya, Leonel F</au><au>Kobayashi, Takayuki</au><au>Tomasson, Helen M</au><au>Su, Junyi</au><au>Bakewell, Suzanne J</au><au>Stewart, Sheila A</au><au>Egbulefu, Christopher</au><au>Karmakar, Partha</au><au>Meyer, Melisa A</au><au>Veis, Deborah J</au><au>DeNardo, David G</au><au>Lanza, Gregory M</au><au>Achilefu, Samuel</au><au>Weilbaecher, Katherine N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2021-10-15</date><risdate>2021</risdate><volume>131</volume><issue>20</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1558-8238</issn><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>34520398</pmid><doi>10.1172/JCI145296</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7101-5582</orcidid><orcidid>https://orcid.org/0000-0001-6436-731X</orcidid><orcidid>https://orcid.org/0000-0002-5889-9413</orcidid><orcidid>https://orcid.org/0000-0002-3655-5783</orcidid><orcidid>https://orcid.org/0000-0002-1060-3855</orcidid><orcidid>https://orcid.org/0000-0003-0351-2928</orcidid><orcidid>https://orcid.org/0000-0001-8944-9792</orcidid><orcidid>https://orcid.org/0000-0001-5257-3247</orcidid><orcidid>https://orcid.org/0000-0002-2260-9576</orcidid><orcidid>https://orcid.org/0000-0002-4025-3091</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8238
ispartof The Journal of clinical investigation, 2021-10, Vol.131 (20), p.1-17
issn 1558-8238
0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8516467
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animal models
Animals
Arginase
Arginase - physiology
Arginine
Biomarkers
Biomedical research
Bone marrow cells
Breast cancer
Breast Neoplasms - immunology
Breast Neoplasms - pathology
Cancer
Cancer immunotherapy
Care and treatment
Cell Line, Tumor
Cell therapy
Cyclic AMP - physiology
Development and progression
Female
Gene expression
Genetic aspects
Genotype & phenotype
Granulocyte-macrophage colony stimulating factor
Granulocyte-Macrophage Colony-Stimulating Factor - physiology
Granulocytes
Health aspects
Humans
Immune checkpoint
Immune Tolerance
Immunotherapy
Lung cancer
Lymphocytes
Lymphocytes T
MAP kinase
Medical prognosis
Melanoma
Metabolism
Mice
Mice, Inbred C57BL
Myeloid cells
Myeloid Cells - enzymology
Oncology, Experimental
Phenotypes
Stat3 protein
Stat6 protein
T cell receptors
Tumor Microenvironment
Tumor-infiltrating lymphocytes
Tumors
title Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breast%20cancer-derived%20GM-CSF%20regulates%20arginase%201%20in%20myeloid%20cells%20to%20promote%20an%20immunosuppressive%20microenvironment&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Su,%20Xinming&rft.date=2021-10-15&rft.volume=131&rft.issue=20&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1558-8238&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI145296&rft_dat=%3Cgale_pubme%3EA680641824%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592379484&rft_id=info:pmid/34520398&rft_galeid=A680641824&rfr_iscdi=true