Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment
Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expressio...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2021-10, Vol.131 (20), p.1-17 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 20 |
container_start_page | 1 |
container_title | The Journal of clinical investigation |
container_volume | 131 |
creator | Su, Xinming Xu, Yalin Fox, Gregory C Xiang, Jingyu Kwakwa, Kristin A Davis, Jennifer L Belle, Jad I Lee, Wen-Chih Wong, Wing H Fontana, Francesca Hernandez-Aya, Leonel F Kobayashi, Takayuki Tomasson, Helen M Su, Junyi Bakewell, Suzanne J Stewart, Sheila A Egbulefu, Christopher Karmakar, Partha Meyer, Melisa A Veis, Deborah J DeNardo, David G Lanza, Gregory M Achilefu, Samuel Weilbaecher, Katherine N |
description | Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy. |
doi_str_mv | 10.1172/JCI145296 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8516467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A680641824</galeid><sourcerecordid>A680641824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-aa014e518809d25da44a7bef5479b39e0e623cb7bb3dd72ec55c17c2a07c5f6c3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoh9w4A8gS0ioHFLirzi5IJUVLYuKKlHgajnOJOsqsYPtrOi_xyvKsov2gHywZT_zzoznzbIXuDjHWJC3nxZLzDipy0fZMea8yitCq8c756PsJIS7osCMcfY0O6KJLmhdHWfhvQcVItLKavB5C96soUVXn_PF7SXy0M-DihCQ8r2xKgDCyFg03sPgTIs0DENA0aHJu9FFQMoiM46zdWGeJg8hJDU0Gu0d2LXxzo5g47PsSaeGAM8f9tPs2-WHr4uP-fXN1XJxcZ3rshAxVyrVCxxXVVG3hLeKMSUa6DgTdUNrKKAkVDeiaWjbCgKac42FJqoQmnelpqfZu9-609yM0OqU2qtBTt6Myt9Lp4zcf7FmJXu3lhXHJStFEjh7EPDuxwwhytGETc_KgpuDJFyQmvK6pgl99Q9652ZvU3uJqgkVNavYX6pXA0hjO5fy6o2ovCiromS4IhsqP0D1YCEV6Sx0Jl3v8ecH-LRaSF9_MODNXkBiIvyMvZpDkMvbL__P3nzfZ1_vsCtQQ1wFN8zROBsOiiZjhOCh2w4FF3Jjabm1dGJf7k5xS_7xMP0FRYzuig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592379484</pqid></control><display><type>article</type><title>Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Su, Xinming ; Xu, Yalin ; Fox, Gregory C ; Xiang, Jingyu ; Kwakwa, Kristin A ; Davis, Jennifer L ; Belle, Jad I ; Lee, Wen-Chih ; Wong, Wing H ; Fontana, Francesca ; Hernandez-Aya, Leonel F ; Kobayashi, Takayuki ; Tomasson, Helen M ; Su, Junyi ; Bakewell, Suzanne J ; Stewart, Sheila A ; Egbulefu, Christopher ; Karmakar, Partha ; Meyer, Melisa A ; Veis, Deborah J ; DeNardo, David G ; Lanza, Gregory M ; Achilefu, Samuel ; Weilbaecher, Katherine N</creator><creatorcontrib>Su, Xinming ; Xu, Yalin ; Fox, Gregory C ; Xiang, Jingyu ; Kwakwa, Kristin A ; Davis, Jennifer L ; Belle, Jad I ; Lee, Wen-Chih ; Wong, Wing H ; Fontana, Francesca ; Hernandez-Aya, Leonel F ; Kobayashi, Takayuki ; Tomasson, Helen M ; Su, Junyi ; Bakewell, Suzanne J ; Stewart, Sheila A ; Egbulefu, Christopher ; Karmakar, Partha ; Meyer, Melisa A ; Veis, Deborah J ; DeNardo, David G ; Lanza, Gregory M ; Achilefu, Samuel ; Weilbaecher, Katherine N</creatorcontrib><description>Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.</description><identifier>ISSN: 1558-8238</identifier><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI145296</identifier><identifier>PMID: 34520398</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animal models ; Animals ; Arginase ; Arginase - physiology ; Arginine ; Biomarkers ; Biomedical research ; Bone marrow cells ; Breast cancer ; Breast Neoplasms - immunology ; Breast Neoplasms - pathology ; Cancer ; Cancer immunotherapy ; Care and treatment ; Cell Line, Tumor ; Cell therapy ; Cyclic AMP - physiology ; Development and progression ; Female ; Gene expression ; Genetic aspects ; Genotype & phenotype ; Granulocyte-macrophage colony stimulating factor ; Granulocyte-Macrophage Colony-Stimulating Factor - physiology ; Granulocytes ; Health aspects ; Humans ; Immune checkpoint ; Immune Tolerance ; Immunotherapy ; Lung cancer ; Lymphocytes ; Lymphocytes T ; MAP kinase ; Medical prognosis ; Melanoma ; Metabolism ; Mice ; Mice, Inbred C57BL ; Myeloid cells ; Myeloid Cells - enzymology ; Oncology, Experimental ; Phenotypes ; Stat3 protein ; Stat6 protein ; T cell receptors ; Tumor Microenvironment ; Tumor-infiltrating lymphocytes ; Tumors</subject><ispartof>The Journal of clinical investigation, 2021-10, Vol.131 (20), p.1-17</ispartof><rights>COPYRIGHT 2021 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Oct 2021</rights><rights>2021 American Society for Clinical Investigation 2021 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-aa014e518809d25da44a7bef5479b39e0e623cb7bb3dd72ec55c17c2a07c5f6c3</citedby><cites>FETCH-LOGICAL-c607t-aa014e518809d25da44a7bef5479b39e0e623cb7bb3dd72ec55c17c2a07c5f6c3</cites><orcidid>0000-0001-7101-5582 ; 0000-0001-6436-731X ; 0000-0002-5889-9413 ; 0000-0002-3655-5783 ; 0000-0002-1060-3855 ; 0000-0003-0351-2928 ; 0000-0001-8944-9792 ; 0000-0001-5257-3247 ; 0000-0002-2260-9576 ; 0000-0002-4025-3091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516467/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516467/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34520398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Xinming</creatorcontrib><creatorcontrib>Xu, Yalin</creatorcontrib><creatorcontrib>Fox, Gregory C</creatorcontrib><creatorcontrib>Xiang, Jingyu</creatorcontrib><creatorcontrib>Kwakwa, Kristin A</creatorcontrib><creatorcontrib>Davis, Jennifer L</creatorcontrib><creatorcontrib>Belle, Jad I</creatorcontrib><creatorcontrib>Lee, Wen-Chih</creatorcontrib><creatorcontrib>Wong, Wing H</creatorcontrib><creatorcontrib>Fontana, Francesca</creatorcontrib><creatorcontrib>Hernandez-Aya, Leonel F</creatorcontrib><creatorcontrib>Kobayashi, Takayuki</creatorcontrib><creatorcontrib>Tomasson, Helen M</creatorcontrib><creatorcontrib>Su, Junyi</creatorcontrib><creatorcontrib>Bakewell, Suzanne J</creatorcontrib><creatorcontrib>Stewart, Sheila A</creatorcontrib><creatorcontrib>Egbulefu, Christopher</creatorcontrib><creatorcontrib>Karmakar, Partha</creatorcontrib><creatorcontrib>Meyer, Melisa A</creatorcontrib><creatorcontrib>Veis, Deborah J</creatorcontrib><creatorcontrib>DeNardo, David G</creatorcontrib><creatorcontrib>Lanza, Gregory M</creatorcontrib><creatorcontrib>Achilefu, Samuel</creatorcontrib><creatorcontrib>Weilbaecher, Katherine N</creatorcontrib><title>Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.</description><subject>Animal models</subject><subject>Animals</subject><subject>Arginase</subject><subject>Arginase - physiology</subject><subject>Arginine</subject><subject>Biomarkers</subject><subject>Biomedical research</subject><subject>Bone marrow cells</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - immunology</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>Care and treatment</subject><subject>Cell Line, Tumor</subject><subject>Cell therapy</subject><subject>Cyclic AMP - physiology</subject><subject>Development and progression</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genotype & phenotype</subject><subject>Granulocyte-macrophage colony stimulating factor</subject><subject>Granulocyte-Macrophage Colony-Stimulating Factor - physiology</subject><subject>Granulocytes</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immune checkpoint</subject><subject>Immune Tolerance</subject><subject>Immunotherapy</subject><subject>Lung cancer</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>MAP kinase</subject><subject>Medical prognosis</subject><subject>Melanoma</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Myeloid cells</subject><subject>Myeloid Cells - enzymology</subject><subject>Oncology, Experimental</subject><subject>Phenotypes</subject><subject>Stat3 protein</subject><subject>Stat6 protein</subject><subject>T cell receptors</subject><subject>Tumor Microenvironment</subject><subject>Tumor-infiltrating lymphocytes</subject><subject>Tumors</subject><issn>1558-8238</issn><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk1v1DAQhiMEoh9w4A8gS0ioHFLirzi5IJUVLYuKKlHgajnOJOsqsYPtrOi_xyvKsov2gHywZT_zzoznzbIXuDjHWJC3nxZLzDipy0fZMea8yitCq8c756PsJIS7osCMcfY0O6KJLmhdHWfhvQcVItLKavB5C96soUVXn_PF7SXy0M-DihCQ8r2xKgDCyFg03sPgTIs0DENA0aHJu9FFQMoiM46zdWGeJg8hJDU0Gu0d2LXxzo5g47PsSaeGAM8f9tPs2-WHr4uP-fXN1XJxcZ3rshAxVyrVCxxXVVG3hLeKMSUa6DgTdUNrKKAkVDeiaWjbCgKac42FJqoQmnelpqfZu9-609yM0OqU2qtBTt6Myt9Lp4zcf7FmJXu3lhXHJStFEjh7EPDuxwwhytGETc_KgpuDJFyQmvK6pgl99Q9652ZvU3uJqgkVNavYX6pXA0hjO5fy6o2ovCiromS4IhsqP0D1YCEV6Sx0Jl3v8ecH-LRaSF9_MODNXkBiIvyMvZpDkMvbL__P3nzfZ1_vsCtQQ1wFN8zROBsOiiZjhOCh2w4FF3Jjabm1dGJf7k5xS_7xMP0FRYzuig</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Su, Xinming</creator><creator>Xu, Yalin</creator><creator>Fox, Gregory C</creator><creator>Xiang, Jingyu</creator><creator>Kwakwa, Kristin A</creator><creator>Davis, Jennifer L</creator><creator>Belle, Jad I</creator><creator>Lee, Wen-Chih</creator><creator>Wong, Wing H</creator><creator>Fontana, Francesca</creator><creator>Hernandez-Aya, Leonel F</creator><creator>Kobayashi, Takayuki</creator><creator>Tomasson, Helen M</creator><creator>Su, Junyi</creator><creator>Bakewell, Suzanne J</creator><creator>Stewart, Sheila A</creator><creator>Egbulefu, Christopher</creator><creator>Karmakar, Partha</creator><creator>Meyer, Melisa A</creator><creator>Veis, Deborah J</creator><creator>DeNardo, David G</creator><creator>Lanza, Gregory M</creator><creator>Achilefu, Samuel</creator><creator>Weilbaecher, Katherine N</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7101-5582</orcidid><orcidid>https://orcid.org/0000-0001-6436-731X</orcidid><orcidid>https://orcid.org/0000-0002-5889-9413</orcidid><orcidid>https://orcid.org/0000-0002-3655-5783</orcidid><orcidid>https://orcid.org/0000-0002-1060-3855</orcidid><orcidid>https://orcid.org/0000-0003-0351-2928</orcidid><orcidid>https://orcid.org/0000-0001-8944-9792</orcidid><orcidid>https://orcid.org/0000-0001-5257-3247</orcidid><orcidid>https://orcid.org/0000-0002-2260-9576</orcidid><orcidid>https://orcid.org/0000-0002-4025-3091</orcidid></search><sort><creationdate>20211015</creationdate><title>Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment</title><author>Su, Xinming ; Xu, Yalin ; Fox, Gregory C ; Xiang, Jingyu ; Kwakwa, Kristin A ; Davis, Jennifer L ; Belle, Jad I ; Lee, Wen-Chih ; Wong, Wing H ; Fontana, Francesca ; Hernandez-Aya, Leonel F ; Kobayashi, Takayuki ; Tomasson, Helen M ; Su, Junyi ; Bakewell, Suzanne J ; Stewart, Sheila A ; Egbulefu, Christopher ; Karmakar, Partha ; Meyer, Melisa A ; Veis, Deborah J ; DeNardo, David G ; Lanza, Gregory M ; Achilefu, Samuel ; Weilbaecher, Katherine N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-aa014e518809d25da44a7bef5479b39e0e623cb7bb3dd72ec55c17c2a07c5f6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Arginase</topic><topic>Arginase - physiology</topic><topic>Arginine</topic><topic>Biomarkers</topic><topic>Biomedical research</topic><topic>Bone marrow cells</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - immunology</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>Care and treatment</topic><topic>Cell Line, Tumor</topic><topic>Cell therapy</topic><topic>Cyclic AMP - physiology</topic><topic>Development and progression</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genotype & phenotype</topic><topic>Granulocyte-macrophage colony stimulating factor</topic><topic>Granulocyte-Macrophage Colony-Stimulating Factor - physiology</topic><topic>Granulocytes</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immune checkpoint</topic><topic>Immune Tolerance</topic><topic>Immunotherapy</topic><topic>Lung cancer</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>MAP kinase</topic><topic>Medical prognosis</topic><topic>Melanoma</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Myeloid cells</topic><topic>Myeloid Cells - enzymology</topic><topic>Oncology, Experimental</topic><topic>Phenotypes</topic><topic>Stat3 protein</topic><topic>Stat6 protein</topic><topic>T cell receptors</topic><topic>Tumor Microenvironment</topic><topic>Tumor-infiltrating lymphocytes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Xinming</creatorcontrib><creatorcontrib>Xu, Yalin</creatorcontrib><creatorcontrib>Fox, Gregory C</creatorcontrib><creatorcontrib>Xiang, Jingyu</creatorcontrib><creatorcontrib>Kwakwa, Kristin A</creatorcontrib><creatorcontrib>Davis, Jennifer L</creatorcontrib><creatorcontrib>Belle, Jad I</creatorcontrib><creatorcontrib>Lee, Wen-Chih</creatorcontrib><creatorcontrib>Wong, Wing H</creatorcontrib><creatorcontrib>Fontana, Francesca</creatorcontrib><creatorcontrib>Hernandez-Aya, Leonel F</creatorcontrib><creatorcontrib>Kobayashi, Takayuki</creatorcontrib><creatorcontrib>Tomasson, Helen M</creatorcontrib><creatorcontrib>Su, Junyi</creatorcontrib><creatorcontrib>Bakewell, Suzanne J</creatorcontrib><creatorcontrib>Stewart, Sheila A</creatorcontrib><creatorcontrib>Egbulefu, Christopher</creatorcontrib><creatorcontrib>Karmakar, Partha</creatorcontrib><creatorcontrib>Meyer, Melisa A</creatorcontrib><creatorcontrib>Veis, Deborah J</creatorcontrib><creatorcontrib>DeNardo, David G</creatorcontrib><creatorcontrib>Lanza, Gregory M</creatorcontrib><creatorcontrib>Achilefu, Samuel</creatorcontrib><creatorcontrib>Weilbaecher, Katherine N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Xinming</au><au>Xu, Yalin</au><au>Fox, Gregory C</au><au>Xiang, Jingyu</au><au>Kwakwa, Kristin A</au><au>Davis, Jennifer L</au><au>Belle, Jad I</au><au>Lee, Wen-Chih</au><au>Wong, Wing H</au><au>Fontana, Francesca</au><au>Hernandez-Aya, Leonel F</au><au>Kobayashi, Takayuki</au><au>Tomasson, Helen M</au><au>Su, Junyi</au><au>Bakewell, Suzanne J</au><au>Stewart, Sheila A</au><au>Egbulefu, Christopher</au><au>Karmakar, Partha</au><au>Meyer, Melisa A</au><au>Veis, Deborah J</au><au>DeNardo, David G</au><au>Lanza, Gregory M</au><au>Achilefu, Samuel</au><au>Weilbaecher, Katherine N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2021-10-15</date><risdate>2021</risdate><volume>131</volume><issue>20</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1558-8238</issn><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>34520398</pmid><doi>10.1172/JCI145296</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7101-5582</orcidid><orcidid>https://orcid.org/0000-0001-6436-731X</orcidid><orcidid>https://orcid.org/0000-0002-5889-9413</orcidid><orcidid>https://orcid.org/0000-0002-3655-5783</orcidid><orcidid>https://orcid.org/0000-0002-1060-3855</orcidid><orcidid>https://orcid.org/0000-0003-0351-2928</orcidid><orcidid>https://orcid.org/0000-0001-8944-9792</orcidid><orcidid>https://orcid.org/0000-0001-5257-3247</orcidid><orcidid>https://orcid.org/0000-0002-2260-9576</orcidid><orcidid>https://orcid.org/0000-0002-4025-3091</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8238 |
ispartof | The Journal of clinical investigation, 2021-10, Vol.131 (20), p.1-17 |
issn | 1558-8238 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8516467 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animal models Animals Arginase Arginase - physiology Arginine Biomarkers Biomedical research Bone marrow cells Breast cancer Breast Neoplasms - immunology Breast Neoplasms - pathology Cancer Cancer immunotherapy Care and treatment Cell Line, Tumor Cell therapy Cyclic AMP - physiology Development and progression Female Gene expression Genetic aspects Genotype & phenotype Granulocyte-macrophage colony stimulating factor Granulocyte-Macrophage Colony-Stimulating Factor - physiology Granulocytes Health aspects Humans Immune checkpoint Immune Tolerance Immunotherapy Lung cancer Lymphocytes Lymphocytes T MAP kinase Medical prognosis Melanoma Metabolism Mice Mice, Inbred C57BL Myeloid cells Myeloid Cells - enzymology Oncology, Experimental Phenotypes Stat3 protein Stat6 protein T cell receptors Tumor Microenvironment Tumor-infiltrating lymphocytes Tumors |
title | Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breast%20cancer-derived%20GM-CSF%20regulates%20arginase%201%20in%20myeloid%20cells%20to%20promote%20an%20immunosuppressive%20microenvironment&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Su,%20Xinming&rft.date=2021-10-15&rft.volume=131&rft.issue=20&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1558-8238&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI145296&rft_dat=%3Cgale_pubme%3EA680641824%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592379484&rft_id=info:pmid/34520398&rft_galeid=A680641824&rfr_iscdi=true |