A Sodium-Translocating Module Linking Succinate Production to Formation of Membrane Potential in Prevotella bryantii

Ruminants such as cattle and sheep depend on the breakdown of carbohydrates from plant-based feedstuff, which is accomplished by the microbial community in the rumen. Roughly 40% of the members of the rumen microbiota belong to the family , which ferments sugars to organic acids such as acetate, pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2021-10, Vol.87 (21), p.e0121121-e0121121
Hauptverfasser: Schleicher, Lena, Trautmann, Andrej, Stegmann, Dennis P, Fritz, Günter, Gätgens, Jochem, Bott, Michael, Hein, Sascha, Simon, Jörg, Seifert, Jana, Steuber, Julia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0121121
container_issue 21
container_start_page e0121121
container_title Applied and environmental microbiology
container_volume 87
creator Schleicher, Lena
Trautmann, Andrej
Stegmann, Dennis P
Fritz, Günter
Gätgens, Jochem
Bott, Michael
Hein, Sascha
Simon, Jörg
Seifert, Jana
Steuber, Julia
description Ruminants such as cattle and sheep depend on the breakdown of carbohydrates from plant-based feedstuff, which is accomplished by the microbial community in the rumen. Roughly 40% of the members of the rumen microbiota belong to the family , which ferments sugars to organic acids such as acetate, propionate, and succinate. These substrates are important nutrients for the ruminant. In a metaproteome analysis of the rumen of cattle, proteins that are homologous to the Na -translocating NADH:quinone oxidoreductase (NQR) and the quinone:fumarate reductase (QFR) were identified in different species. Here, we show that fumarate reduction to succinate in anaerobically growing Prevotella bryantii is coupled to chemiosmotic energy conservation by a supercomplex composed of NQR and QFR. This odium-translocating ADH: umarate oxido eductase (SNFR) supercomplex was enriched by blue native PAGE (BN-PAGE) and characterized by in-gel enzyme activity staining and mass spectrometry. High NADH oxidation (850 nmol min mg ), quinone reduction (490 nmol min mg ), and fumarate reduction (1,200 nmol min mg ) activities, together with high expression levels, demonstrate that SNFR represents a charge-separating unit in . Absorption spectroscopy of SNFR exposed to different substrates revealed intramolecular electron transfer from the flavin adenine dinucleotide (FAD) cofactor in NQR to heme cofactors in QFR. SNFR catalyzed the stoichiometric conversion of NADH and fumarate to NAD and succinate. We propose that the regeneration of NAD in is intimately linked to the buildup of an electrochemical gradient which powers ATP synthesis by electron transport phosphorylation. Feeding strategies for ruminants are designed to optimize nutrient efficiency for animals and to prevent energy losses like enhanced methane production. Key to this are the fermentative reactions of the rumen microbiota, dominated by spp. We show that succinate formation by is coupled to NADH oxidation and sodium gradient formation by a newly described supercomplex consisting of Na -translocating NADH:quinone oxidoreductase (NQR) and fumarate reductase (QFR), representing the odium-translocating ADH: umarate oxido eductase (SNFR) supercomplex. SNFR is the major charge-separating module, generating an electrochemical sodium gradient in . Our findings offer clues to the observation that use of fumarate as feed additive does not significantly increase succinate production, or decrease methanogenesis, by the microbial commu
doi_str_mv 10.1128/AEM.01211-21
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8516057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568608621</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-7b3fb534bd512dc647e37bc7c348cdab5066e046d90fa2146d5190e2513be8fc3</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoModlu981oC3ig4bU6-JnMjLKWthV0UWq9DJpOpqTNJm8wU-u_N7vZDBa-Sk_Pk4RxehN4BOQSg6mh5sj4kQAEqCi_QAkijKsGYfIkWhDRNRSkne2g_52tCCCdSvUZ7jHPZQFMv0LTEF7Hz81hdJhPyEK2ZfLjC69jNg8MrH35tyovZWh_M5PD3VDp28jHgKeLTmEazLWKP125si6QwcXJh8mbAPpQP7q7Uw2Bwm-5Nefdv0KveDNm9fTgP0I_Tk8vjr9Xq29n58XJVmTLfVNUt61vBeNsJoJ2VvHasbm1tGVe2M60gUjrCZdeQ3lAoFwENcVQAa53qLTtAX3bem7kdXWfLUMkM-ib50aR7HY3Xf3eC_6mv4p1WAiQRdRF8fBCkeDu7POnRZ7vZJbg4Z02FVJIoSaGgH_5Br-OcQlmvUIoBcOBNoT7vKJtizsn1T8MA0Zs4dYlTb-PUW-mnHW7ySJ-F_2Hf_7nsk_gxa_YbmHupEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583114149</pqid></control><display><type>article</type><title>A Sodium-Translocating Module Linking Succinate Production to Formation of Membrane Potential in Prevotella bryantii</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Schleicher, Lena ; Trautmann, Andrej ; Stegmann, Dennis P ; Fritz, Günter ; Gätgens, Jochem ; Bott, Michael ; Hein, Sascha ; Simon, Jörg ; Seifert, Jana ; Steuber, Julia</creator><contributor>Stams, Alfons J. M</contributor><creatorcontrib>Schleicher, Lena ; Trautmann, Andrej ; Stegmann, Dennis P ; Fritz, Günter ; Gätgens, Jochem ; Bott, Michael ; Hein, Sascha ; Simon, Jörg ; Seifert, Jana ; Steuber, Julia ; Stams, Alfons J. M</creatorcontrib><description>Ruminants such as cattle and sheep depend on the breakdown of carbohydrates from plant-based feedstuff, which is accomplished by the microbial community in the rumen. Roughly 40% of the members of the rumen microbiota belong to the family , which ferments sugars to organic acids such as acetate, propionate, and succinate. These substrates are important nutrients for the ruminant. In a metaproteome analysis of the rumen of cattle, proteins that are homologous to the Na -translocating NADH:quinone oxidoreductase (NQR) and the quinone:fumarate reductase (QFR) were identified in different species. Here, we show that fumarate reduction to succinate in anaerobically growing Prevotella bryantii is coupled to chemiosmotic energy conservation by a supercomplex composed of NQR and QFR. This odium-translocating ADH: umarate oxido eductase (SNFR) supercomplex was enriched by blue native PAGE (BN-PAGE) and characterized by in-gel enzyme activity staining and mass spectrometry. High NADH oxidation (850 nmol min mg ), quinone reduction (490 nmol min mg ), and fumarate reduction (1,200 nmol min mg ) activities, together with high expression levels, demonstrate that SNFR represents a charge-separating unit in . Absorption spectroscopy of SNFR exposed to different substrates revealed intramolecular electron transfer from the flavin adenine dinucleotide (FAD) cofactor in NQR to heme cofactors in QFR. SNFR catalyzed the stoichiometric conversion of NADH and fumarate to NAD and succinate. We propose that the regeneration of NAD in is intimately linked to the buildup of an electrochemical gradient which powers ATP synthesis by electron transport phosphorylation. Feeding strategies for ruminants are designed to optimize nutrient efficiency for animals and to prevent energy losses like enhanced methane production. Key to this are the fermentative reactions of the rumen microbiota, dominated by spp. We show that succinate formation by is coupled to NADH oxidation and sodium gradient formation by a newly described supercomplex consisting of Na -translocating NADH:quinone oxidoreductase (NQR) and fumarate reductase (QFR), representing the odium-translocating ADH: umarate oxido eductase (SNFR) supercomplex. SNFR is the major charge-separating module, generating an electrochemical sodium gradient in . Our findings offer clues to the observation that use of fumarate as feed additive does not significantly increase succinate production, or decrease methanogenesis, by the microbial community in the rumen.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.01211-21</identifier><identifier>PMID: 34469197</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Absorption spectroscopy ; Acetic acid ; Adenine ; Animals ; Bacteriology ; Carbohydrates ; Cattle ; Cofactors ; Electrochemistry ; Electron transfer ; Electron transport ; Energy conservation ; Environmental Microbiology ; Enzymatic activity ; Enzyme activity ; Flavin ; Flavin-adenine dinucleotide ; Fumarates - metabolism ; Heme ; Homology ; Mass spectrometry ; Mass spectroscopy ; Membrane potential ; Membrane Potentials ; Microbiota ; Microorganisms ; NAD ; NADH ; Nicotinamide adenine dinucleotide ; Nutrients ; Organic acids ; Oxidation ; Phosphorylation ; Prevotella ; Prevotella - enzymology ; Propionic acid ; Quinone oxidoreductase ; Quinones ; Reductases ; Reduction ; Regeneration ; Rumen ; Sheep ; Sodium ; Sodium - metabolism ; Substrates ; Succinate Dehydrogenase ; Succinates - metabolism ; Sugar</subject><ispartof>Applied and environmental microbiology, 2021-10, Vol.87 (21), p.e0121121-e0121121</ispartof><rights>Copyright © 2021 Schleicher et al.</rights><rights>Copyright American Society for Microbiology Oct 2021</rights><rights>Copyright © 2021 Schleicher et al. 2021 Schleicher et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-7b3fb534bd512dc647e37bc7c348cdab5066e046d90fa2146d5190e2513be8fc3</citedby><cites>FETCH-LOGICAL-a446t-7b3fb534bd512dc647e37bc7c348cdab5066e046d90fa2146d5190e2513be8fc3</cites><orcidid>0000-0002-4701-8254 ; 0000-0002-1747-2747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.asm.org/doi/pdf/10.1128/AEM.01211-21$$EPDF$$P50$$Gasm2$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.asm.org/doi/full/10.1128/AEM.01211-21$$EHTML$$P50$$Gasm2$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,27901,27902,52726,52727,52728,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34469197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Stams, Alfons J. M</contributor><creatorcontrib>Schleicher, Lena</creatorcontrib><creatorcontrib>Trautmann, Andrej</creatorcontrib><creatorcontrib>Stegmann, Dennis P</creatorcontrib><creatorcontrib>Fritz, Günter</creatorcontrib><creatorcontrib>Gätgens, Jochem</creatorcontrib><creatorcontrib>Bott, Michael</creatorcontrib><creatorcontrib>Hein, Sascha</creatorcontrib><creatorcontrib>Simon, Jörg</creatorcontrib><creatorcontrib>Seifert, Jana</creatorcontrib><creatorcontrib>Steuber, Julia</creatorcontrib><title>A Sodium-Translocating Module Linking Succinate Production to Formation of Membrane Potential in Prevotella bryantii</title><title>Applied and environmental microbiology</title><addtitle>Appl Environ Microbiol</addtitle><addtitle>Appl Environ Microbiol</addtitle><description>Ruminants such as cattle and sheep depend on the breakdown of carbohydrates from plant-based feedstuff, which is accomplished by the microbial community in the rumen. Roughly 40% of the members of the rumen microbiota belong to the family , which ferments sugars to organic acids such as acetate, propionate, and succinate. These substrates are important nutrients for the ruminant. In a metaproteome analysis of the rumen of cattle, proteins that are homologous to the Na -translocating NADH:quinone oxidoreductase (NQR) and the quinone:fumarate reductase (QFR) were identified in different species. Here, we show that fumarate reduction to succinate in anaerobically growing Prevotella bryantii is coupled to chemiosmotic energy conservation by a supercomplex composed of NQR and QFR. This odium-translocating ADH: umarate oxido eductase (SNFR) supercomplex was enriched by blue native PAGE (BN-PAGE) and characterized by in-gel enzyme activity staining and mass spectrometry. High NADH oxidation (850 nmol min mg ), quinone reduction (490 nmol min mg ), and fumarate reduction (1,200 nmol min mg ) activities, together with high expression levels, demonstrate that SNFR represents a charge-separating unit in . Absorption spectroscopy of SNFR exposed to different substrates revealed intramolecular electron transfer from the flavin adenine dinucleotide (FAD) cofactor in NQR to heme cofactors in QFR. SNFR catalyzed the stoichiometric conversion of NADH and fumarate to NAD and succinate. We propose that the regeneration of NAD in is intimately linked to the buildup of an electrochemical gradient which powers ATP synthesis by electron transport phosphorylation. Feeding strategies for ruminants are designed to optimize nutrient efficiency for animals and to prevent energy losses like enhanced methane production. Key to this are the fermentative reactions of the rumen microbiota, dominated by spp. We show that succinate formation by is coupled to NADH oxidation and sodium gradient formation by a newly described supercomplex consisting of Na -translocating NADH:quinone oxidoreductase (NQR) and fumarate reductase (QFR), representing the odium-translocating ADH: umarate oxido eductase (SNFR) supercomplex. SNFR is the major charge-separating module, generating an electrochemical sodium gradient in . Our findings offer clues to the observation that use of fumarate as feed additive does not significantly increase succinate production, or decrease methanogenesis, by the microbial community in the rumen.</description><subject>Absorption spectroscopy</subject><subject>Acetic acid</subject><subject>Adenine</subject><subject>Animals</subject><subject>Bacteriology</subject><subject>Carbohydrates</subject><subject>Cattle</subject><subject>Cofactors</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Electron transport</subject><subject>Energy conservation</subject><subject>Environmental Microbiology</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Flavin</subject><subject>Flavin-adenine dinucleotide</subject><subject>Fumarates - metabolism</subject><subject>Heme</subject><subject>Homology</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Membrane potential</subject><subject>Membrane Potentials</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>NAD</subject><subject>NADH</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Nutrients</subject><subject>Organic acids</subject><subject>Oxidation</subject><subject>Phosphorylation</subject><subject>Prevotella</subject><subject>Prevotella - enzymology</subject><subject>Propionic acid</subject><subject>Quinone oxidoreductase</subject><subject>Quinones</subject><subject>Reductases</subject><subject>Reduction</subject><subject>Regeneration</subject><subject>Rumen</subject><subject>Sheep</subject><subject>Sodium</subject><subject>Sodium - metabolism</subject><subject>Substrates</subject><subject>Succinate Dehydrogenase</subject><subject>Succinates - metabolism</subject><subject>Sugar</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1rFDEUhoModlu981oC3ig4bU6-JnMjLKWthV0UWq9DJpOpqTNJm8wU-u_N7vZDBa-Sk_Pk4RxehN4BOQSg6mh5sj4kQAEqCi_QAkijKsGYfIkWhDRNRSkne2g_52tCCCdSvUZ7jHPZQFMv0LTEF7Hz81hdJhPyEK2ZfLjC69jNg8MrH35tyovZWh_M5PD3VDp28jHgKeLTmEazLWKP125si6QwcXJh8mbAPpQP7q7Uw2Bwm-5Nefdv0KveDNm9fTgP0I_Tk8vjr9Xq29n58XJVmTLfVNUt61vBeNsJoJ2VvHasbm1tGVe2M60gUjrCZdeQ3lAoFwENcVQAa53qLTtAX3bem7kdXWfLUMkM-ib50aR7HY3Xf3eC_6mv4p1WAiQRdRF8fBCkeDu7POnRZ7vZJbg4Z02FVJIoSaGgH_5Br-OcQlmvUIoBcOBNoT7vKJtizsn1T8MA0Zs4dYlTb-PUW-mnHW7ySJ-F_2Hf_7nsk_gxa_YbmHupEA</recordid><startdate>20211014</startdate><enddate>20211014</enddate><creator>Schleicher, Lena</creator><creator>Trautmann, Andrej</creator><creator>Stegmann, Dennis P</creator><creator>Fritz, Günter</creator><creator>Gätgens, Jochem</creator><creator>Bott, Michael</creator><creator>Hein, Sascha</creator><creator>Simon, Jörg</creator><creator>Seifert, Jana</creator><creator>Steuber, Julia</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4701-8254</orcidid><orcidid>https://orcid.org/0000-0002-1747-2747</orcidid></search><sort><creationdate>20211014</creationdate><title>A Sodium-Translocating Module Linking Succinate Production to Formation of Membrane Potential in Prevotella bryantii</title><author>Schleicher, Lena ; Trautmann, Andrej ; Stegmann, Dennis P ; Fritz, Günter ; Gätgens, Jochem ; Bott, Michael ; Hein, Sascha ; Simon, Jörg ; Seifert, Jana ; Steuber, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-7b3fb534bd512dc647e37bc7c348cdab5066e046d90fa2146d5190e2513be8fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectroscopy</topic><topic>Acetic acid</topic><topic>Adenine</topic><topic>Animals</topic><topic>Bacteriology</topic><topic>Carbohydrates</topic><topic>Cattle</topic><topic>Cofactors</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Electron transport</topic><topic>Energy conservation</topic><topic>Environmental Microbiology</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Flavin</topic><topic>Flavin-adenine dinucleotide</topic><topic>Fumarates - metabolism</topic><topic>Heme</topic><topic>Homology</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Membrane potential</topic><topic>Membrane Potentials</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>NAD</topic><topic>NADH</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Nutrients</topic><topic>Organic acids</topic><topic>Oxidation</topic><topic>Phosphorylation</topic><topic>Prevotella</topic><topic>Prevotella - enzymology</topic><topic>Propionic acid</topic><topic>Quinone oxidoreductase</topic><topic>Quinones</topic><topic>Reductases</topic><topic>Reduction</topic><topic>Regeneration</topic><topic>Rumen</topic><topic>Sheep</topic><topic>Sodium</topic><topic>Sodium - metabolism</topic><topic>Substrates</topic><topic>Succinate Dehydrogenase</topic><topic>Succinates - metabolism</topic><topic>Sugar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schleicher, Lena</creatorcontrib><creatorcontrib>Trautmann, Andrej</creatorcontrib><creatorcontrib>Stegmann, Dennis P</creatorcontrib><creatorcontrib>Fritz, Günter</creatorcontrib><creatorcontrib>Gätgens, Jochem</creatorcontrib><creatorcontrib>Bott, Michael</creatorcontrib><creatorcontrib>Hein, Sascha</creatorcontrib><creatorcontrib>Simon, Jörg</creatorcontrib><creatorcontrib>Seifert, Jana</creatorcontrib><creatorcontrib>Steuber, Julia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schleicher, Lena</au><au>Trautmann, Andrej</au><au>Stegmann, Dennis P</au><au>Fritz, Günter</au><au>Gätgens, Jochem</au><au>Bott, Michael</au><au>Hein, Sascha</au><au>Simon, Jörg</au><au>Seifert, Jana</au><au>Steuber, Julia</au><au>Stams, Alfons J. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Sodium-Translocating Module Linking Succinate Production to Formation of Membrane Potential in Prevotella bryantii</atitle><jtitle>Applied and environmental microbiology</jtitle><stitle>Appl Environ Microbiol</stitle><addtitle>Appl Environ Microbiol</addtitle><date>2021-10-14</date><risdate>2021</risdate><volume>87</volume><issue>21</issue><spage>e0121121</spage><epage>e0121121</epage><pages>e0121121-e0121121</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><abstract>Ruminants such as cattle and sheep depend on the breakdown of carbohydrates from plant-based feedstuff, which is accomplished by the microbial community in the rumen. Roughly 40% of the members of the rumen microbiota belong to the family , which ferments sugars to organic acids such as acetate, propionate, and succinate. These substrates are important nutrients for the ruminant. In a metaproteome analysis of the rumen of cattle, proteins that are homologous to the Na -translocating NADH:quinone oxidoreductase (NQR) and the quinone:fumarate reductase (QFR) were identified in different species. Here, we show that fumarate reduction to succinate in anaerobically growing Prevotella bryantii is coupled to chemiosmotic energy conservation by a supercomplex composed of NQR and QFR. This odium-translocating ADH: umarate oxido eductase (SNFR) supercomplex was enriched by blue native PAGE (BN-PAGE) and characterized by in-gel enzyme activity staining and mass spectrometry. High NADH oxidation (850 nmol min mg ), quinone reduction (490 nmol min mg ), and fumarate reduction (1,200 nmol min mg ) activities, together with high expression levels, demonstrate that SNFR represents a charge-separating unit in . Absorption spectroscopy of SNFR exposed to different substrates revealed intramolecular electron transfer from the flavin adenine dinucleotide (FAD) cofactor in NQR to heme cofactors in QFR. SNFR catalyzed the stoichiometric conversion of NADH and fumarate to NAD and succinate. We propose that the regeneration of NAD in is intimately linked to the buildup of an electrochemical gradient which powers ATP synthesis by electron transport phosphorylation. Feeding strategies for ruminants are designed to optimize nutrient efficiency for animals and to prevent energy losses like enhanced methane production. Key to this are the fermentative reactions of the rumen microbiota, dominated by spp. We show that succinate formation by is coupled to NADH oxidation and sodium gradient formation by a newly described supercomplex consisting of Na -translocating NADH:quinone oxidoreductase (NQR) and fumarate reductase (QFR), representing the odium-translocating ADH: umarate oxido eductase (SNFR) supercomplex. SNFR is the major charge-separating module, generating an electrochemical sodium gradient in . Our findings offer clues to the observation that use of fumarate as feed additive does not significantly increase succinate production, or decrease methanogenesis, by the microbial community in the rumen.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>34469197</pmid><doi>10.1128/AEM.01211-21</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4701-8254</orcidid><orcidid>https://orcid.org/0000-0002-1747-2747</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and environmental microbiology, 2021-10, Vol.87 (21), p.e0121121-e0121121
issn 0099-2240
1098-5336
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8516057
source American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Absorption spectroscopy
Acetic acid
Adenine
Animals
Bacteriology
Carbohydrates
Cattle
Cofactors
Electrochemistry
Electron transfer
Electron transport
Energy conservation
Environmental Microbiology
Enzymatic activity
Enzyme activity
Flavin
Flavin-adenine dinucleotide
Fumarates - metabolism
Heme
Homology
Mass spectrometry
Mass spectroscopy
Membrane potential
Membrane Potentials
Microbiota
Microorganisms
NAD
NADH
Nicotinamide adenine dinucleotide
Nutrients
Organic acids
Oxidation
Phosphorylation
Prevotella
Prevotella - enzymology
Propionic acid
Quinone oxidoreductase
Quinones
Reductases
Reduction
Regeneration
Rumen
Sheep
Sodium
Sodium - metabolism
Substrates
Succinate Dehydrogenase
Succinates - metabolism
Sugar
title A Sodium-Translocating Module Linking Succinate Production to Formation of Membrane Potential in Prevotella bryantii
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Sodium-Translocating%20Module%20Linking%20Succinate%20Production%20to%20Formation%20of%20Membrane%20Potential%20in%20Prevotella%20bryantii&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Schleicher,%20Lena&rft.date=2021-10-14&rft.volume=87&rft.issue=21&rft.spage=e0121121&rft.epage=e0121121&rft.pages=e0121121-e0121121&rft.issn=0099-2240&rft.eissn=1098-5336&rft_id=info:doi/10.1128/AEM.01211-21&rft_dat=%3Cproquest_pubme%3E2568608621%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583114149&rft_id=info:pmid/34469197&rfr_iscdi=true