Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe-Salpeter Equation Formalisms
In this work, a theoretical and computational set of tools to study and analyze time-resolved electron dynamics in molecules, under the influence of one or more external pulses, is presented. By coupling electronic-structure methods with the resolution of the time-dependent Schrödinger equation, we...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2021-10, Vol.17 (10), p.6314-6329 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6329 |
---|---|
container_issue | 10 |
container_start_page | 6314 |
container_title | Journal of chemical theory and computation |
container_volume | 17 |
creator | Grobas Illobre, P Marsili, M Corni, S Stener, M Toffoli, D Coccia, E |
description | In this work, a theoretical and computational set of tools to study and analyze time-resolved electron dynamics in molecules, under the influence of one or more external pulses, is presented. By coupling electronic-structure methods with the resolution of the time-dependent Schrödinger equation, we developed and implemented the time-resolved induced density of the electronic wavepacket, the time-resolved formulation of the differential projection density of states (ΔPDOS), and of transition contribution map (TCM) to look at the single-electron orbital occupation and localization change in time. Moreover, to further quantify the possible charge transfer, we also defined the energy-integrated ΔPDOS and the fragment-projected TCM. We have used time-dependent density-functional theory (TDDFT), as implemented in ADF software, and the Bethe-Salpeter equation, as provided by MolGW package, for the description of the electronic excited states. This suite of postprocessing tools also provides the time evolution of the electronic states of the system of interest. To illustrate the usefulness of these postprocessing tools, excited-state populations have been computed for HBDI (the chromophore of GFP) and DNQDI molecules interacting with a sequence of two pulses. Time-resolved descriptors have been applied to study the time-resolved electron dynamics of HBDI, DNQDI, LiCN (being a model system for dipole switching upon highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) electronic excitation), and Ag
. The computational analysis tools presented in this article can be employed to help the interpretation of fast and ultrafast spectroscopies on molecular, supramolecular, and composite systems. |
doi_str_mv | 10.1021/acs.jctc.1c00211 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8515806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569621050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-f8d42458222b06db0094d53ca0f4fd95825f67adf7dbbb10552775ca14ebe3ed3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0Eoh9w54QsceGywZ8b54JUmqQgFSHRcLa89ix15F2ntrci_x5HDRFwmhnNM6898yL0hpIZJYx-MDbPtrbYGbWk1vQZOqdSLJpFy9rnp5yqM3SR85YQzgXjL9EZF0K1StFzlDd-gOY75BgeweHVL-sLuOaumAL4ajRhn33GscdfYwA7BZPwqiYlxREv96MZvM242-PNcrneYDM6_AnKPTR3JuygQKUfJlN8pdcxDSb4PORX6EVvQobXx3iJfqxXm-vPze23my_XV7eNFUyUpleuRqkYYx1pXUfIQjjJrSG96N2iNmTfzo3r567rOkqkZPO5tIYK6ICD45fo45PubuoGcBbGkkzQu-QHk_Y6Gq__7Yz-Xv-Mj1pJKhVpq8D7o0CKDxPkogefLYRgRohT1ky29dL1ZVLRd_-h2ziler8DpZjiTAlRKfJE2RRzTtCfPkOJPjiqq6P64Kg-OlpH3v69xGngj4X8N5eun8c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582832844</pqid></control><display><type>article</type><title>Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe-Salpeter Equation Formalisms</title><source>ACS Publications</source><creator>Grobas Illobre, P ; Marsili, M ; Corni, S ; Stener, M ; Toffoli, D ; Coccia, E</creator><creatorcontrib>Grobas Illobre, P ; Marsili, M ; Corni, S ; Stener, M ; Toffoli, D ; Coccia, E</creatorcontrib><description>In this work, a theoretical and computational set of tools to study and analyze time-resolved electron dynamics in molecules, under the influence of one or more external pulses, is presented. By coupling electronic-structure methods with the resolution of the time-dependent Schrödinger equation, we developed and implemented the time-resolved induced density of the electronic wavepacket, the time-resolved formulation of the differential projection density of states (ΔPDOS), and of transition contribution map (TCM) to look at the single-electron orbital occupation and localization change in time. Moreover, to further quantify the possible charge transfer, we also defined the energy-integrated ΔPDOS and the fragment-projected TCM. We have used time-dependent density-functional theory (TDDFT), as implemented in ADF software, and the Bethe-Salpeter equation, as provided by MolGW package, for the description of the electronic excited states. This suite of postprocessing tools also provides the time evolution of the electronic states of the system of interest. To illustrate the usefulness of these postprocessing tools, excited-state populations have been computed for HBDI (the chromophore of GFP) and DNQDI molecules interacting with a sequence of two pulses. Time-resolved descriptors have been applied to study the time-resolved electron dynamics of HBDI, DNQDI, LiCN (being a model system for dipole switching upon highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) electronic excitation), and Ag
. The computational analysis tools presented in this article can be employed to help the interpretation of fast and ultrafast spectroscopies on molecular, supramolecular, and composite systems.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.1c00211</identifier><identifier>PMID: 34486881</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Charge transfer ; Chromophores ; Coupling (molecular) ; Density functional theory ; Dipoles ; Electron orbitals ; Electron states ; Electronic structure ; Excitation ; Molecular orbitals ; Schrodinger equation ; Single electrons ; Software ; Time dependence ; Wave packets</subject><ispartof>Journal of chemical theory and computation, 2021-10, Vol.17 (10), p.6314-6329</ispartof><rights>Copyright American Chemical Society Oct 12, 2021</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-f8d42458222b06db0094d53ca0f4fd95825f67adf7dbbb10552775ca14ebe3ed3</citedby><cites>FETCH-LOGICAL-c424t-f8d42458222b06db0094d53ca0f4fd95825f67adf7dbbb10552775ca14ebe3ed3</cites><orcidid>0000-0001-6707-108X ; 0000-0002-8225-6119 ; 0000-0003-3389-0989 ; 0000-0003-3700-7903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2752,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34486881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grobas Illobre, P</creatorcontrib><creatorcontrib>Marsili, M</creatorcontrib><creatorcontrib>Corni, S</creatorcontrib><creatorcontrib>Stener, M</creatorcontrib><creatorcontrib>Toffoli, D</creatorcontrib><creatorcontrib>Coccia, E</creatorcontrib><title>Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe-Salpeter Equation Formalisms</title><title>Journal of chemical theory and computation</title><addtitle>J Chem Theory Comput</addtitle><description>In this work, a theoretical and computational set of tools to study and analyze time-resolved electron dynamics in molecules, under the influence of one or more external pulses, is presented. By coupling electronic-structure methods with the resolution of the time-dependent Schrödinger equation, we developed and implemented the time-resolved induced density of the electronic wavepacket, the time-resolved formulation of the differential projection density of states (ΔPDOS), and of transition contribution map (TCM) to look at the single-electron orbital occupation and localization change in time. Moreover, to further quantify the possible charge transfer, we also defined the energy-integrated ΔPDOS and the fragment-projected TCM. We have used time-dependent density-functional theory (TDDFT), as implemented in ADF software, and the Bethe-Salpeter equation, as provided by MolGW package, for the description of the electronic excited states. This suite of postprocessing tools also provides the time evolution of the electronic states of the system of interest. To illustrate the usefulness of these postprocessing tools, excited-state populations have been computed for HBDI (the chromophore of GFP) and DNQDI molecules interacting with a sequence of two pulses. Time-resolved descriptors have been applied to study the time-resolved electron dynamics of HBDI, DNQDI, LiCN (being a model system for dipole switching upon highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) electronic excitation), and Ag
. The computational analysis tools presented in this article can be employed to help the interpretation of fast and ultrafast spectroscopies on molecular, supramolecular, and composite systems.</description><subject>Charge transfer</subject><subject>Chromophores</subject><subject>Coupling (molecular)</subject><subject>Density functional theory</subject><subject>Dipoles</subject><subject>Electron orbitals</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>Excitation</subject><subject>Molecular orbitals</subject><subject>Schrodinger equation</subject><subject>Single electrons</subject><subject>Software</subject><subject>Time dependence</subject><subject>Wave packets</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkU1vEzEQhi0Eoh9w54QsceGywZ8b54JUmqQgFSHRcLa89ix15F2ntrci_x5HDRFwmhnNM6898yL0hpIZJYx-MDbPtrbYGbWk1vQZOqdSLJpFy9rnp5yqM3SR85YQzgXjL9EZF0K1StFzlDd-gOY75BgeweHVL-sLuOaumAL4ajRhn33GscdfYwA7BZPwqiYlxREv96MZvM242-PNcrneYDM6_AnKPTR3JuygQKUfJlN8pdcxDSb4PORX6EVvQobXx3iJfqxXm-vPze23my_XV7eNFUyUpleuRqkYYx1pXUfIQjjJrSG96N2iNmTfzo3r567rOkqkZPO5tIYK6ICD45fo45PubuoGcBbGkkzQu-QHk_Y6Gq__7Yz-Xv-Mj1pJKhVpq8D7o0CKDxPkogefLYRgRohT1ky29dL1ZVLRd_-h2ziler8DpZjiTAlRKfJE2RRzTtCfPkOJPjiqq6P64Kg-OlpH3v69xGngj4X8N5eun8c</recordid><startdate>20211012</startdate><enddate>20211012</enddate><creator>Grobas Illobre, P</creator><creator>Marsili, M</creator><creator>Corni, S</creator><creator>Stener, M</creator><creator>Toffoli, D</creator><creator>Coccia, E</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6707-108X</orcidid><orcidid>https://orcid.org/0000-0002-8225-6119</orcidid><orcidid>https://orcid.org/0000-0003-3389-0989</orcidid><orcidid>https://orcid.org/0000-0003-3700-7903</orcidid></search><sort><creationdate>20211012</creationdate><title>Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe-Salpeter Equation Formalisms</title><author>Grobas Illobre, P ; Marsili, M ; Corni, S ; Stener, M ; Toffoli, D ; Coccia, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-f8d42458222b06db0094d53ca0f4fd95825f67adf7dbbb10552775ca14ebe3ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge transfer</topic><topic>Chromophores</topic><topic>Coupling (molecular)</topic><topic>Density functional theory</topic><topic>Dipoles</topic><topic>Electron orbitals</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>Excitation</topic><topic>Molecular orbitals</topic><topic>Schrodinger equation</topic><topic>Single electrons</topic><topic>Software</topic><topic>Time dependence</topic><topic>Wave packets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grobas Illobre, P</creatorcontrib><creatorcontrib>Marsili, M</creatorcontrib><creatorcontrib>Corni, S</creatorcontrib><creatorcontrib>Stener, M</creatorcontrib><creatorcontrib>Toffoli, D</creatorcontrib><creatorcontrib>Coccia, E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grobas Illobre, P</au><au>Marsili, M</au><au>Corni, S</au><au>Stener, M</au><au>Toffoli, D</au><au>Coccia, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe-Salpeter Equation Formalisms</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J Chem Theory Comput</addtitle><date>2021-10-12</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>6314</spage><epage>6329</epage><pages>6314-6329</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>In this work, a theoretical and computational set of tools to study and analyze time-resolved electron dynamics in molecules, under the influence of one or more external pulses, is presented. By coupling electronic-structure methods with the resolution of the time-dependent Schrödinger equation, we developed and implemented the time-resolved induced density of the electronic wavepacket, the time-resolved formulation of the differential projection density of states (ΔPDOS), and of transition contribution map (TCM) to look at the single-electron orbital occupation and localization change in time. Moreover, to further quantify the possible charge transfer, we also defined the energy-integrated ΔPDOS and the fragment-projected TCM. We have used time-dependent density-functional theory (TDDFT), as implemented in ADF software, and the Bethe-Salpeter equation, as provided by MolGW package, for the description of the electronic excited states. This suite of postprocessing tools also provides the time evolution of the electronic states of the system of interest. To illustrate the usefulness of these postprocessing tools, excited-state populations have been computed for HBDI (the chromophore of GFP) and DNQDI molecules interacting with a sequence of two pulses. Time-resolved descriptors have been applied to study the time-resolved electron dynamics of HBDI, DNQDI, LiCN (being a model system for dipole switching upon highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) electronic excitation), and Ag
. The computational analysis tools presented in this article can be employed to help the interpretation of fast and ultrafast spectroscopies on molecular, supramolecular, and composite systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34486881</pmid><doi>10.1021/acs.jctc.1c00211</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6707-108X</orcidid><orcidid>https://orcid.org/0000-0002-8225-6119</orcidid><orcidid>https://orcid.org/0000-0003-3389-0989</orcidid><orcidid>https://orcid.org/0000-0003-3700-7903</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2021-10, Vol.17 (10), p.6314-6329 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8515806 |
source | ACS Publications |
subjects | Charge transfer Chromophores Coupling (molecular) Density functional theory Dipoles Electron orbitals Electron states Electronic structure Excitation Molecular orbitals Schrodinger equation Single electrons Software Time dependence Wave packets |
title | Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe-Salpeter Equation Formalisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Resolved%20Excited-State%20Analysis%20of%20Molecular%20Electron%20Dynamics%20by%20TDDFT%20and%20Bethe-Salpeter%20Equation%20Formalisms&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Grobas%20Illobre,%20P&rft.date=2021-10-12&rft.volume=17&rft.issue=10&rft.spage=6314&rft.epage=6329&rft.pages=6314-6329&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.1c00211&rft_dat=%3Cproquest_pubme%3E2569621050%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582832844&rft_id=info:pmid/34486881&rfr_iscdi=true |