CNN-based framework for classifying temporal relations with question encoder
Temporal-relation classification plays an important role in the field of natural language processing. Various deep learning-based classifiers, which can generate better models using sentence embedding, have been proposed to address this challenging task. These approaches, however, do not work well d...
Gespeichert in:
Veröffentlicht in: | International journal on digital libraries 2022-06, Vol.23 (2), p.167-177 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 2 |
container_start_page | 167 |
container_title | International journal on digital libraries |
container_volume | 23 |
creator | Seki, Yohei Zhao, Kangkang Oguni, Masaki Sugiyama, Kazunari |
description | Temporal-relation classification plays an important role in the field of natural language processing. Various deep learning-based classifiers, which can generate better models using sentence embedding, have been proposed to address this challenging task. These approaches, however, do not work well due to the lack of task-related information. To overcome this problem, we propose a novel framework that incorporates prior information by employing awareness of events and time expressions (time–event entities) with various window sizes to focus on context words around the entities as a filter. We refer to this module as “question encoder.” In our approach, this kind of prior information can extract task-related information from simple sentence embedding. Our experimental results on a publicly available
Timebank-Dense
corpus demonstrate that our approach outperforms some state-of-the-art techniques, including CNN-, LSTM-, and BERT-based temporal relation classifiers. |
doi_str_mv | 10.1007/s00799-021-00310-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8513567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597807523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-9d7a446bc1172ce748e77c9ce2f8f5ef188c00d9d0d75cc9d3ff769dcb4cf0843</originalsourceid><addsrcrecordid>eNp9kUlvFDEQhS1ERBb4AxxQS1y4NCkv3eW-IKERCUijcIGz5bHLkw7d7cHuSZR_H09mCMuBixfVV8_1_Bh7zeE9B8DzXJauq0HwGkByqPkzdsKVFDWXAM8P5wa4OGanOd8AANccX7BjqRBbxOaELRdXV_XKZvJVSHaku5h-VCGmyg025z7c99O6mmncxGSHKtFg5z5Oubrr5-vq55by7lrR5KKn9JIdBTtkenXYz9j3i0_fFp_r5dfLL4uPy9opVHPdebRKtSvHOQpHqDQhus6RCDo0FLjWDsB3Hjw2znVehoBt591KuQBayTP2Ya-72a5G8o6muUxnNqkfbbo30fbm78rUX5t1vDW64bJpsQi8Owik-GjCjH12NAx2orjNRjQdasBGyIK-_Qe9ids0FXtGtK3cfbHmhRJ7yqWYc6LwNAwHswvL7MMyJSzzGJbZNb3508ZTy690CiD3QC6laU3p99v_kX0A-UOhPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663143281</pqid></control><display><type>article</type><title>CNN-based framework for classifying temporal relations with question encoder</title><source>SpringerLink Journals</source><creator>Seki, Yohei ; Zhao, Kangkang ; Oguni, Masaki ; Sugiyama, Kazunari</creator><creatorcontrib>Seki, Yohei ; Zhao, Kangkang ; Oguni, Masaki ; Sugiyama, Kazunari</creatorcontrib><description>Temporal-relation classification plays an important role in the field of natural language processing. Various deep learning-based classifiers, which can generate better models using sentence embedding, have been proposed to address this challenging task. These approaches, however, do not work well due to the lack of task-related information. To overcome this problem, we propose a novel framework that incorporates prior information by employing awareness of events and time expressions (time–event entities) with various window sizes to focus on context words around the entities as a filter. We refer to this module as “question encoder.” In our approach, this kind of prior information can extract task-related information from simple sentence embedding. Our experimental results on a publicly available
Timebank-Dense
corpus demonstrate that our approach outperforms some state-of-the-art techniques, including CNN-, LSTM-, and BERT-based temporal relation classifiers.</description><identifier>ISSN: 1432-5012</identifier><identifier>EISSN: 1432-1300</identifier><identifier>DOI: 10.1007/s00799-021-00310-1</identifier><identifier>PMID: 34776775</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classification ; Classifiers ; Coders ; Computer Science ; Database Management ; Deep learning ; Embedding ; Information Systems and Communication Service ; Machine learning ; Natural language processing ; Questions</subject><ispartof>International journal on digital libraries, 2022-06, Vol.23 (2), p.167-177</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-9d7a446bc1172ce748e77c9ce2f8f5ef188c00d9d0d75cc9d3ff769dcb4cf0843</citedby><cites>FETCH-LOGICAL-c474t-9d7a446bc1172ce748e77c9ce2f8f5ef188c00d9d0d75cc9d3ff769dcb4cf0843</cites><orcidid>0000-0001-6388-1480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00799-021-00310-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00799-021-00310-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34776775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seki, Yohei</creatorcontrib><creatorcontrib>Zhao, Kangkang</creatorcontrib><creatorcontrib>Oguni, Masaki</creatorcontrib><creatorcontrib>Sugiyama, Kazunari</creatorcontrib><title>CNN-based framework for classifying temporal relations with question encoder</title><title>International journal on digital libraries</title><addtitle>Int J Digit Libr</addtitle><addtitle>Int J Digit Libr</addtitle><description>Temporal-relation classification plays an important role in the field of natural language processing. Various deep learning-based classifiers, which can generate better models using sentence embedding, have been proposed to address this challenging task. These approaches, however, do not work well due to the lack of task-related information. To overcome this problem, we propose a novel framework that incorporates prior information by employing awareness of events and time expressions (time–event entities) with various window sizes to focus on context words around the entities as a filter. We refer to this module as “question encoder.” In our approach, this kind of prior information can extract task-related information from simple sentence embedding. Our experimental results on a publicly available
Timebank-Dense
corpus demonstrate that our approach outperforms some state-of-the-art techniques, including CNN-, LSTM-, and BERT-based temporal relation classifiers.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Coders</subject><subject>Computer Science</subject><subject>Database Management</subject><subject>Deep learning</subject><subject>Embedding</subject><subject>Information Systems and Communication Service</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Questions</subject><issn>1432-5012</issn><issn>1432-1300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUlvFDEQhS1ERBb4AxxQS1y4NCkv3eW-IKERCUijcIGz5bHLkw7d7cHuSZR_H09mCMuBixfVV8_1_Bh7zeE9B8DzXJauq0HwGkByqPkzdsKVFDWXAM8P5wa4OGanOd8AANccX7BjqRBbxOaELRdXV_XKZvJVSHaku5h-VCGmyg025z7c99O6mmncxGSHKtFg5z5Oubrr5-vq55by7lrR5KKn9JIdBTtkenXYz9j3i0_fFp_r5dfLL4uPy9opVHPdebRKtSvHOQpHqDQhus6RCDo0FLjWDsB3Hjw2znVehoBt591KuQBayTP2Ya-72a5G8o6muUxnNqkfbbo30fbm78rUX5t1vDW64bJpsQi8Owik-GjCjH12NAx2orjNRjQdasBGyIK-_Qe9ids0FXtGtK3cfbHmhRJ7yqWYc6LwNAwHswvL7MMyJSzzGJbZNb3508ZTy690CiD3QC6laU3p99v_kX0A-UOhPw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Seki, Yohei</creator><creator>Zhao, Kangkang</creator><creator>Oguni, Masaki</creator><creator>Sugiyama, Kazunari</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M1O</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6388-1480</orcidid></search><sort><creationdate>20220601</creationdate><title>CNN-based framework for classifying temporal relations with question encoder</title><author>Seki, Yohei ; Zhao, Kangkang ; Oguni, Masaki ; Sugiyama, Kazunari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-9d7a446bc1172ce748e77c9ce2f8f5ef188c00d9d0d75cc9d3ff769dcb4cf0843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Coders</topic><topic>Computer Science</topic><topic>Database Management</topic><topic>Deep learning</topic><topic>Embedding</topic><topic>Information Systems and Communication Service</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Questions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seki, Yohei</creatorcontrib><creatorcontrib>Zhao, Kangkang</creatorcontrib><creatorcontrib>Oguni, Masaki</creatorcontrib><creatorcontrib>Sugiyama, Kazunari</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal on digital libraries</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seki, Yohei</au><au>Zhao, Kangkang</au><au>Oguni, Masaki</au><au>Sugiyama, Kazunari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CNN-based framework for classifying temporal relations with question encoder</atitle><jtitle>International journal on digital libraries</jtitle><stitle>Int J Digit Libr</stitle><addtitle>Int J Digit Libr</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>23</volume><issue>2</issue><spage>167</spage><epage>177</epage><pages>167-177</pages><issn>1432-5012</issn><eissn>1432-1300</eissn><abstract>Temporal-relation classification plays an important role in the field of natural language processing. Various deep learning-based classifiers, which can generate better models using sentence embedding, have been proposed to address this challenging task. These approaches, however, do not work well due to the lack of task-related information. To overcome this problem, we propose a novel framework that incorporates prior information by employing awareness of events and time expressions (time–event entities) with various window sizes to focus on context words around the entities as a filter. We refer to this module as “question encoder.” In our approach, this kind of prior information can extract task-related information from simple sentence embedding. Our experimental results on a publicly available
Timebank-Dense
corpus demonstrate that our approach outperforms some state-of-the-art techniques, including CNN-, LSTM-, and BERT-based temporal relation classifiers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34776775</pmid><doi>10.1007/s00799-021-00310-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6388-1480</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-5012 |
ispartof | International journal on digital libraries, 2022-06, Vol.23 (2), p.167-177 |
issn | 1432-5012 1432-1300 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8513567 |
source | SpringerLink Journals |
subjects | Classification Classifiers Coders Computer Science Database Management Deep learning Embedding Information Systems and Communication Service Machine learning Natural language processing Questions |
title | CNN-based framework for classifying temporal relations with question encoder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CNN-based%20framework%20for%20classifying%20temporal%20relations%20with%20question%20encoder&rft.jtitle=International%20journal%20on%20digital%20libraries&rft.au=Seki,%20Yohei&rft.date=2022-06-01&rft.volume=23&rft.issue=2&rft.spage=167&rft.epage=177&rft.pages=167-177&rft.issn=1432-5012&rft.eissn=1432-1300&rft_id=info:doi/10.1007/s00799-021-00310-1&rft_dat=%3Cproquest_pubme%3E2597807523%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663143281&rft_id=info:pmid/34776775&rfr_iscdi=true |