CNN-based framework for classifying temporal relations with question encoder

Temporal-relation classification plays an important role in the field of natural language processing. Various deep learning-based classifiers, which can generate better models using sentence embedding, have been proposed to address this challenging task. These approaches, however, do not work well d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal on digital libraries 2022-06, Vol.23 (2), p.167-177
Hauptverfasser: Seki, Yohei, Zhao, Kangkang, Oguni, Masaki, Sugiyama, Kazunari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 2
container_start_page 167
container_title International journal on digital libraries
container_volume 23
creator Seki, Yohei
Zhao, Kangkang
Oguni, Masaki
Sugiyama, Kazunari
description Temporal-relation classification plays an important role in the field of natural language processing. Various deep learning-based classifiers, which can generate better models using sentence embedding, have been proposed to address this challenging task. These approaches, however, do not work well due to the lack of task-related information. To overcome this problem, we propose a novel framework that incorporates prior information by employing awareness of events and time expressions (time–event entities) with various window sizes to focus on context words around the entities as a filter. We refer to this module as “question encoder.” In our approach, this kind of prior information can extract task-related information from simple sentence embedding. Our experimental results on a publicly available Timebank-Dense corpus demonstrate that our approach outperforms some state-of-the-art techniques, including CNN-, LSTM-, and BERT-based temporal relation classifiers.
doi_str_mv 10.1007/s00799-021-00310-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8513567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597807523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-9d7a446bc1172ce748e77c9ce2f8f5ef188c00d9d0d75cc9d3ff769dcb4cf0843</originalsourceid><addsrcrecordid>eNp9kUlvFDEQhS1ERBb4AxxQS1y4NCkv3eW-IKERCUijcIGz5bHLkw7d7cHuSZR_H09mCMuBixfVV8_1_Bh7zeE9B8DzXJauq0HwGkByqPkzdsKVFDWXAM8P5wa4OGanOd8AANccX7BjqRBbxOaELRdXV_XKZvJVSHaku5h-VCGmyg025z7c99O6mmncxGSHKtFg5z5Oubrr5-vq55by7lrR5KKn9JIdBTtkenXYz9j3i0_fFp_r5dfLL4uPy9opVHPdebRKtSvHOQpHqDQhus6RCDo0FLjWDsB3Hjw2znVehoBt591KuQBayTP2Ya-72a5G8o6muUxnNqkfbbo30fbm78rUX5t1vDW64bJpsQi8Owik-GjCjH12NAx2orjNRjQdasBGyIK-_Qe9ids0FXtGtK3cfbHmhRJ7yqWYc6LwNAwHswvL7MMyJSzzGJbZNb3508ZTy690CiD3QC6laU3p99v_kX0A-UOhPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663143281</pqid></control><display><type>article</type><title>CNN-based framework for classifying temporal relations with question encoder</title><source>SpringerLink Journals</source><creator>Seki, Yohei ; Zhao, Kangkang ; Oguni, Masaki ; Sugiyama, Kazunari</creator><creatorcontrib>Seki, Yohei ; Zhao, Kangkang ; Oguni, Masaki ; Sugiyama, Kazunari</creatorcontrib><description>Temporal-relation classification plays an important role in the field of natural language processing. Various deep learning-based classifiers, which can generate better models using sentence embedding, have been proposed to address this challenging task. These approaches, however, do not work well due to the lack of task-related information. To overcome this problem, we propose a novel framework that incorporates prior information by employing awareness of events and time expressions (time–event entities) with various window sizes to focus on context words around the entities as a filter. We refer to this module as “question encoder.” In our approach, this kind of prior information can extract task-related information from simple sentence embedding. Our experimental results on a publicly available Timebank-Dense corpus demonstrate that our approach outperforms some state-of-the-art techniques, including CNN-, LSTM-, and BERT-based temporal relation classifiers.</description><identifier>ISSN: 1432-5012</identifier><identifier>EISSN: 1432-1300</identifier><identifier>DOI: 10.1007/s00799-021-00310-1</identifier><identifier>PMID: 34776775</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classification ; Classifiers ; Coders ; Computer Science ; Database Management ; Deep learning ; Embedding ; Information Systems and Communication Service ; Machine learning ; Natural language processing ; Questions</subject><ispartof>International journal on digital libraries, 2022-06, Vol.23 (2), p.167-177</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-9d7a446bc1172ce748e77c9ce2f8f5ef188c00d9d0d75cc9d3ff769dcb4cf0843</citedby><cites>FETCH-LOGICAL-c474t-9d7a446bc1172ce748e77c9ce2f8f5ef188c00d9d0d75cc9d3ff769dcb4cf0843</cites><orcidid>0000-0001-6388-1480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00799-021-00310-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00799-021-00310-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34776775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seki, Yohei</creatorcontrib><creatorcontrib>Zhao, Kangkang</creatorcontrib><creatorcontrib>Oguni, Masaki</creatorcontrib><creatorcontrib>Sugiyama, Kazunari</creatorcontrib><title>CNN-based framework for classifying temporal relations with question encoder</title><title>International journal on digital libraries</title><addtitle>Int J Digit Libr</addtitle><addtitle>Int J Digit Libr</addtitle><description>Temporal-relation classification plays an important role in the field of natural language processing. Various deep learning-based classifiers, which can generate better models using sentence embedding, have been proposed to address this challenging task. These approaches, however, do not work well due to the lack of task-related information. To overcome this problem, we propose a novel framework that incorporates prior information by employing awareness of events and time expressions (time–event entities) with various window sizes to focus on context words around the entities as a filter. We refer to this module as “question encoder.” In our approach, this kind of prior information can extract task-related information from simple sentence embedding. Our experimental results on a publicly available Timebank-Dense corpus demonstrate that our approach outperforms some state-of-the-art techniques, including CNN-, LSTM-, and BERT-based temporal relation classifiers.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Coders</subject><subject>Computer Science</subject><subject>Database Management</subject><subject>Deep learning</subject><subject>Embedding</subject><subject>Information Systems and Communication Service</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Questions</subject><issn>1432-5012</issn><issn>1432-1300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUlvFDEQhS1ERBb4AxxQS1y4NCkv3eW-IKERCUijcIGz5bHLkw7d7cHuSZR_H09mCMuBixfVV8_1_Bh7zeE9B8DzXJauq0HwGkByqPkzdsKVFDWXAM8P5wa4OGanOd8AANccX7BjqRBbxOaELRdXV_XKZvJVSHaku5h-VCGmyg025z7c99O6mmncxGSHKtFg5z5Oubrr5-vq55by7lrR5KKn9JIdBTtkenXYz9j3i0_fFp_r5dfLL4uPy9opVHPdebRKtSvHOQpHqDQhus6RCDo0FLjWDsB3Hjw2znVehoBt591KuQBayTP2Ya-72a5G8o6muUxnNqkfbbo30fbm78rUX5t1vDW64bJpsQi8Owik-GjCjH12NAx2orjNRjQdasBGyIK-_Qe9ids0FXtGtK3cfbHmhRJ7yqWYc6LwNAwHswvL7MMyJSzzGJbZNb3508ZTy690CiD3QC6laU3p99v_kX0A-UOhPw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Seki, Yohei</creator><creator>Zhao, Kangkang</creator><creator>Oguni, Masaki</creator><creator>Sugiyama, Kazunari</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M1O</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6388-1480</orcidid></search><sort><creationdate>20220601</creationdate><title>CNN-based framework for classifying temporal relations with question encoder</title><author>Seki, Yohei ; Zhao, Kangkang ; Oguni, Masaki ; Sugiyama, Kazunari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-9d7a446bc1172ce748e77c9ce2f8f5ef188c00d9d0d75cc9d3ff769dcb4cf0843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Coders</topic><topic>Computer Science</topic><topic>Database Management</topic><topic>Deep learning</topic><topic>Embedding</topic><topic>Information Systems and Communication Service</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Questions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seki, Yohei</creatorcontrib><creatorcontrib>Zhao, Kangkang</creatorcontrib><creatorcontrib>Oguni, Masaki</creatorcontrib><creatorcontrib>Sugiyama, Kazunari</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal on digital libraries</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seki, Yohei</au><au>Zhao, Kangkang</au><au>Oguni, Masaki</au><au>Sugiyama, Kazunari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CNN-based framework for classifying temporal relations with question encoder</atitle><jtitle>International journal on digital libraries</jtitle><stitle>Int J Digit Libr</stitle><addtitle>Int J Digit Libr</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>23</volume><issue>2</issue><spage>167</spage><epage>177</epage><pages>167-177</pages><issn>1432-5012</issn><eissn>1432-1300</eissn><abstract>Temporal-relation classification plays an important role in the field of natural language processing. Various deep learning-based classifiers, which can generate better models using sentence embedding, have been proposed to address this challenging task. These approaches, however, do not work well due to the lack of task-related information. To overcome this problem, we propose a novel framework that incorporates prior information by employing awareness of events and time expressions (time–event entities) with various window sizes to focus on context words around the entities as a filter. We refer to this module as “question encoder.” In our approach, this kind of prior information can extract task-related information from simple sentence embedding. Our experimental results on a publicly available Timebank-Dense corpus demonstrate that our approach outperforms some state-of-the-art techniques, including CNN-, LSTM-, and BERT-based temporal relation classifiers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34776775</pmid><doi>10.1007/s00799-021-00310-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6388-1480</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-5012
ispartof International journal on digital libraries, 2022-06, Vol.23 (2), p.167-177
issn 1432-5012
1432-1300
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8513567
source SpringerLink Journals
subjects Classification
Classifiers
Coders
Computer Science
Database Management
Deep learning
Embedding
Information Systems and Communication Service
Machine learning
Natural language processing
Questions
title CNN-based framework for classifying temporal relations with question encoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CNN-based%20framework%20for%20classifying%20temporal%20relations%20with%20question%20encoder&rft.jtitle=International%20journal%20on%20digital%20libraries&rft.au=Seki,%20Yohei&rft.date=2022-06-01&rft.volume=23&rft.issue=2&rft.spage=167&rft.epage=177&rft.pages=167-177&rft.issn=1432-5012&rft.eissn=1432-1300&rft_id=info:doi/10.1007/s00799-021-00310-1&rft_dat=%3Cproquest_pubme%3E2597807523%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663143281&rft_id=info:pmid/34776775&rfr_iscdi=true