Insulin's actions on vascular tissues: Physiological effects and pathophysiological contributions to vascular complications of diabetes
Insulin has been demonstrated to exert direct and indirect effects on vascular tissues. Its actions in vascular cells are mediated by two major pathways: the insulin receptor substrate 1/2-phosphoinositide-3 kinase/Akt (IRS1/2/PI3K/Akt) pathway and the Src/mitogen-activated protein kinase (MAPK) pat...
Gespeichert in:
Veröffentlicht in: | Molecular metabolism (Germany) 2021-10, Vol.52, p.101236-101236, Article 101236 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Insulin has been demonstrated to exert direct and indirect effects on vascular tissues. Its actions in vascular cells are mediated by two major pathways: the insulin receptor substrate 1/2-phosphoinositide-3 kinase/Akt (IRS1/2/PI3K/Akt) pathway and the Src/mitogen-activated protein kinase (MAPK) pathway, both of which contribute to the expression and distribution of metabolites, hormones, and cytokines.
In this review, we summarize the current understanding of insulin's physiological and pathophysiological actions and associated signaling pathways in vascular cells, mainly in endothelial cells (EC) and vascular smooth muscle cells (VSMC), and how these processes lead to selective insulin resistance. We also describe insulin's potential new signaling and biological effects derived from animal studies and cultured capillary and arterial EC, VSMC, and pericytes. We will not provide a detailed discussion of insulin's effects on the myocardium, insulin's structure, or its signaling pathways' various steps, since other articles in this issue discuss these areas in depth.
Insulin mediates many important functions on vascular cells via its receptors and signaling cascades. Its direct actions on EC and VSMC are important for transporting and communicating nutrients, cytokines, hormones, and other signaling molecules. These vascular actions are also important for regulating systemic fuel metabolism and energetics. Inhibiting or enhancing these pathways leads to selective insulin resistance, exacerbating the development of endothelial dysfunction, atherosclerosis, restenosis, poor wound healing, and even myocardial dysfunction. Targeted therapies to improve selective insulin resistance in EC and VSMC are thus needed to specifically mitigate these pathological processes.
•Insulin's actions in vascular cells have a significant influence on systemic metabolism.•Insulin exerts its vascular effects through its receptors and signaling cascades.•Inhibition or enhancement of different insulin signaling leads to selective insulin resistance.•Loss of insulin's actions causes endothelial dysfunction and vascular complications in diabetes. |
---|---|
ISSN: | 2212-8778 2212-8778 |
DOI: | 10.1016/j.molmet.2021.101236 |