Gellan Gum Hydrogels Filled Edible Oil Microemulsion for Biomedical Materials: Phase Diagram, Mechanical Behavior, and In Vivo Studies

The demand for wound care products, especially advanced and active wound care products is huge. In this study, gellan gum (GG) and virgin coconut oil (VCO) were utilized to develop microemulsion-based hydrogel for wound dressing materials. A ternary phase diagram was constructed to obtain an optimiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2021-09, Vol.13 (19), p.3281
Hauptverfasser: Muktar, Muhammad Zulhelmi, Bakar, Muhammad Ameerul Amin, Amin, Khairul Anuar Mat, Che Rose, Laili, Wan Ismail, Wan Iryani, Razali, Mohd Hasmizam, Abd Razak, Saiful Izwan, in het Panhuis, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 3281
container_title Polymers
container_volume 13
creator Muktar, Muhammad Zulhelmi
Bakar, Muhammad Ameerul Amin
Amin, Khairul Anuar Mat
Che Rose, Laili
Wan Ismail, Wan Iryani
Razali, Mohd Hasmizam
Abd Razak, Saiful Izwan
in het Panhuis, Marc
description The demand for wound care products, especially advanced and active wound care products is huge. In this study, gellan gum (GG) and virgin coconut oil (VCO) were utilized to develop microemulsion-based hydrogel for wound dressing materials. A ternary phase diagram was constructed to obtain an optimized ratio of VCO, water, and surfactant to produce VCO microemulsion. The VCO microemulsion was incorporated into gellan gum (GG) hydrogel (GVCO) and their chemical interaction, mechanical performance, physical properties, and thermal behavior were examined. The stress-at-break (σ) and Young’s modulus (YM) of GVCO hydrogel films were increased along with thermal behavior with the inclusion of VCO microemulsion. The swelling degree of GVCO hydrogel decreased as the VCO microemulsion increased and the water vapor transmission rate of GVCO hydrogels was comparable to commercial dressing in the range of 332–391 g m−2 d−1. The qualitative antibacterial activities do not show any inhibition against Gram-negative (Escherichia coli and Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. In vivo studies on Sprague–Dawley rats show the wound contraction of GVCO hydrogel is best (95 ± 2%) after the 14th day compared to a commercial dressing of Smith and Nephew Opsite post-op waterproof dressing, and this result is supported by the ultrasound images of wound skin and histological evaluation of the wound. The findings suggest that GVCO hydrogel has the potential to be developed as a biomedical material.
doi_str_mv 10.3390/polym13193281
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581015434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-319fec355e3d14963506e4a1327d9302eba7f1ee0e5f0869986c911e098272623</originalsourceid><addsrcrecordid>eNpdkU1rHDEMhk1paUKaY--GXnrItLZle8Y9FJo02QQSUujH1XhnNLsOnvHWnlnYP9DfHWcTSlNdJNCjl1cSIW85-wBg2MdNDLuBAzcgGv6CHApWQyVBs5f_1AfkOOc7VkIqrXn9mhyA1JIzow7JnwWG4Ea6mAd6uetSXGHI9MKHgB097_wyIL31gd74NkUc5pB9HGkfEz31ccDOt6403YTJu5A_0W9rl5F-9W6V3HBCb7Bdu3EPneLabX1MJ9SNHb0a6S-_jfT7NHce8xvyqi_zePyUj8jPi_MfZ5fV9e3i6uzLddWCEVNVNu2xBaUQOi6NBsU0SsdB1J0BJnDp6p4jMlQ9a7QxjW4N58hMI2qhBRyRz4-6m3lZ3Lc4TskFu0l-cGlno_P2eWf0a7uKW9soLiQzReD9k0CKv2fMkx18bvc3xDhnK1TDm8KBLui7_9C7OKexrLenGFcSZKGqR6rcN-eE_V8znNmHJ9tnT4Z7cgKY6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581015434</pqid></control><display><type>article</type><title>Gellan Gum Hydrogels Filled Edible Oil Microemulsion for Biomedical Materials: Phase Diagram, Mechanical Behavior, and In Vivo Studies</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Muktar, Muhammad Zulhelmi ; Bakar, Muhammad Ameerul Amin ; Amin, Khairul Anuar Mat ; Che Rose, Laili ; Wan Ismail, Wan Iryani ; Razali, Mohd Hasmizam ; Abd Razak, Saiful Izwan ; in het Panhuis, Marc</creator><creatorcontrib>Muktar, Muhammad Zulhelmi ; Bakar, Muhammad Ameerul Amin ; Amin, Khairul Anuar Mat ; Che Rose, Laili ; Wan Ismail, Wan Iryani ; Razali, Mohd Hasmizam ; Abd Razak, Saiful Izwan ; in het Panhuis, Marc</creatorcontrib><description>The demand for wound care products, especially advanced and active wound care products is huge. In this study, gellan gum (GG) and virgin coconut oil (VCO) were utilized to develop microemulsion-based hydrogel for wound dressing materials. A ternary phase diagram was constructed to obtain an optimized ratio of VCO, water, and surfactant to produce VCO microemulsion. The VCO microemulsion was incorporated into gellan gum (GG) hydrogel (GVCO) and their chemical interaction, mechanical performance, physical properties, and thermal behavior were examined. The stress-at-break (σ) and Young’s modulus (YM) of GVCO hydrogel films were increased along with thermal behavior with the inclusion of VCO microemulsion. The swelling degree of GVCO hydrogel decreased as the VCO microemulsion increased and the water vapor transmission rate of GVCO hydrogels was comparable to commercial dressing in the range of 332–391 g m−2 d−1. The qualitative antibacterial activities do not show any inhibition against Gram-negative (Escherichia coli and Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. In vivo studies on Sprague–Dawley rats show the wound contraction of GVCO hydrogel is best (95 ± 2%) after the 14th day compared to a commercial dressing of Smith and Nephew Opsite post-op waterproof dressing, and this result is supported by the ultrasound images of wound skin and histological evaluation of the wound. The findings suggest that GVCO hydrogel has the potential to be developed as a biomedical material.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13193281</identifier><identifier>PMID: 34641095</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biocompatibility ; Biomedical materials ; Coconut oil ; E coli ; Expenditures ; Fibroblasts ; Gellan gum ; Hydrogels ; In vivo methods and tests ; Klebsiella ; Mechanical properties ; Microemulsions ; Modulus of elasticity ; Phase diagrams ; Physical properties ; Skin ; Spectrum analysis ; Surfactants ; Ternary systems ; Thermodynamic properties ; Water vapor ; Wound healing</subject><ispartof>Polymers, 2021-09, Vol.13 (19), p.3281</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-319fec355e3d14963506e4a1327d9302eba7f1ee0e5f0869986c911e098272623</citedby><cites>FETCH-LOGICAL-c392t-319fec355e3d14963506e4a1327d9302eba7f1ee0e5f0869986c911e098272623</cites><orcidid>0000-0003-0551-015X ; 0000-0001-5325-5478 ; 0000-0001-7477-0284 ; 0000-0002-3259-9295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512409/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512409/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids></links><search><creatorcontrib>Muktar, Muhammad Zulhelmi</creatorcontrib><creatorcontrib>Bakar, Muhammad Ameerul Amin</creatorcontrib><creatorcontrib>Amin, Khairul Anuar Mat</creatorcontrib><creatorcontrib>Che Rose, Laili</creatorcontrib><creatorcontrib>Wan Ismail, Wan Iryani</creatorcontrib><creatorcontrib>Razali, Mohd Hasmizam</creatorcontrib><creatorcontrib>Abd Razak, Saiful Izwan</creatorcontrib><creatorcontrib>in het Panhuis, Marc</creatorcontrib><title>Gellan Gum Hydrogels Filled Edible Oil Microemulsion for Biomedical Materials: Phase Diagram, Mechanical Behavior, and In Vivo Studies</title><title>Polymers</title><description>The demand for wound care products, especially advanced and active wound care products is huge. In this study, gellan gum (GG) and virgin coconut oil (VCO) were utilized to develop microemulsion-based hydrogel for wound dressing materials. A ternary phase diagram was constructed to obtain an optimized ratio of VCO, water, and surfactant to produce VCO microemulsion. The VCO microemulsion was incorporated into gellan gum (GG) hydrogel (GVCO) and their chemical interaction, mechanical performance, physical properties, and thermal behavior were examined. The stress-at-break (σ) and Young’s modulus (YM) of GVCO hydrogel films were increased along with thermal behavior with the inclusion of VCO microemulsion. The swelling degree of GVCO hydrogel decreased as the VCO microemulsion increased and the water vapor transmission rate of GVCO hydrogels was comparable to commercial dressing in the range of 332–391 g m−2 d−1. The qualitative antibacterial activities do not show any inhibition against Gram-negative (Escherichia coli and Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. In vivo studies on Sprague–Dawley rats show the wound contraction of GVCO hydrogel is best (95 ± 2%) after the 14th day compared to a commercial dressing of Smith and Nephew Opsite post-op waterproof dressing, and this result is supported by the ultrasound images of wound skin and histological evaluation of the wound. The findings suggest that GVCO hydrogel has the potential to be developed as a biomedical material.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Coconut oil</subject><subject>E coli</subject><subject>Expenditures</subject><subject>Fibroblasts</subject><subject>Gellan gum</subject><subject>Hydrogels</subject><subject>In vivo methods and tests</subject><subject>Klebsiella</subject><subject>Mechanical properties</subject><subject>Microemulsions</subject><subject>Modulus of elasticity</subject><subject>Phase diagrams</subject><subject>Physical properties</subject><subject>Skin</subject><subject>Spectrum analysis</subject><subject>Surfactants</subject><subject>Ternary systems</subject><subject>Thermodynamic properties</subject><subject>Water vapor</subject><subject>Wound healing</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1rHDEMhk1paUKaY--GXnrItLZle8Y9FJo02QQSUujH1XhnNLsOnvHWnlnYP9DfHWcTSlNdJNCjl1cSIW85-wBg2MdNDLuBAzcgGv6CHApWQyVBs5f_1AfkOOc7VkIqrXn9mhyA1JIzow7JnwWG4Ea6mAd6uetSXGHI9MKHgB097_wyIL31gd74NkUc5pB9HGkfEz31ccDOt6403YTJu5A_0W9rl5F-9W6V3HBCb7Bdu3EPneLabX1MJ9SNHb0a6S-_jfT7NHce8xvyqi_zePyUj8jPi_MfZ5fV9e3i6uzLddWCEVNVNu2xBaUQOi6NBsU0SsdB1J0BJnDp6p4jMlQ9a7QxjW4N58hMI2qhBRyRz4-6m3lZ3Lc4TskFu0l-cGlno_P2eWf0a7uKW9soLiQzReD9k0CKv2fMkx18bvc3xDhnK1TDm8KBLui7_9C7OKexrLenGFcSZKGqR6rcN-eE_V8znNmHJ9tnT4Z7cgKY6g</recordid><startdate>20210926</startdate><enddate>20210926</enddate><creator>Muktar, Muhammad Zulhelmi</creator><creator>Bakar, Muhammad Ameerul Amin</creator><creator>Amin, Khairul Anuar Mat</creator><creator>Che Rose, Laili</creator><creator>Wan Ismail, Wan Iryani</creator><creator>Razali, Mohd Hasmizam</creator><creator>Abd Razak, Saiful Izwan</creator><creator>in het Panhuis, Marc</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0551-015X</orcidid><orcidid>https://orcid.org/0000-0001-5325-5478</orcidid><orcidid>https://orcid.org/0000-0001-7477-0284</orcidid><orcidid>https://orcid.org/0000-0002-3259-9295</orcidid></search><sort><creationdate>20210926</creationdate><title>Gellan Gum Hydrogels Filled Edible Oil Microemulsion for Biomedical Materials: Phase Diagram, Mechanical Behavior, and In Vivo Studies</title><author>Muktar, Muhammad Zulhelmi ; Bakar, Muhammad Ameerul Amin ; Amin, Khairul Anuar Mat ; Che Rose, Laili ; Wan Ismail, Wan Iryani ; Razali, Mohd Hasmizam ; Abd Razak, Saiful Izwan ; in het Panhuis, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-319fec355e3d14963506e4a1327d9302eba7f1ee0e5f0869986c911e098272623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Coconut oil</topic><topic>E coli</topic><topic>Expenditures</topic><topic>Fibroblasts</topic><topic>Gellan gum</topic><topic>Hydrogels</topic><topic>In vivo methods and tests</topic><topic>Klebsiella</topic><topic>Mechanical properties</topic><topic>Microemulsions</topic><topic>Modulus of elasticity</topic><topic>Phase diagrams</topic><topic>Physical properties</topic><topic>Skin</topic><topic>Spectrum analysis</topic><topic>Surfactants</topic><topic>Ternary systems</topic><topic>Thermodynamic properties</topic><topic>Water vapor</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muktar, Muhammad Zulhelmi</creatorcontrib><creatorcontrib>Bakar, Muhammad Ameerul Amin</creatorcontrib><creatorcontrib>Amin, Khairul Anuar Mat</creatorcontrib><creatorcontrib>Che Rose, Laili</creatorcontrib><creatorcontrib>Wan Ismail, Wan Iryani</creatorcontrib><creatorcontrib>Razali, Mohd Hasmizam</creatorcontrib><creatorcontrib>Abd Razak, Saiful Izwan</creatorcontrib><creatorcontrib>in het Panhuis, Marc</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muktar, Muhammad Zulhelmi</au><au>Bakar, Muhammad Ameerul Amin</au><au>Amin, Khairul Anuar Mat</au><au>Che Rose, Laili</au><au>Wan Ismail, Wan Iryani</au><au>Razali, Mohd Hasmizam</au><au>Abd Razak, Saiful Izwan</au><au>in het Panhuis, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gellan Gum Hydrogels Filled Edible Oil Microemulsion for Biomedical Materials: Phase Diagram, Mechanical Behavior, and In Vivo Studies</atitle><jtitle>Polymers</jtitle><date>2021-09-26</date><risdate>2021</risdate><volume>13</volume><issue>19</issue><spage>3281</spage><pages>3281-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The demand for wound care products, especially advanced and active wound care products is huge. In this study, gellan gum (GG) and virgin coconut oil (VCO) were utilized to develop microemulsion-based hydrogel for wound dressing materials. A ternary phase diagram was constructed to obtain an optimized ratio of VCO, water, and surfactant to produce VCO microemulsion. The VCO microemulsion was incorporated into gellan gum (GG) hydrogel (GVCO) and their chemical interaction, mechanical performance, physical properties, and thermal behavior were examined. The stress-at-break (σ) and Young’s modulus (YM) of GVCO hydrogel films were increased along with thermal behavior with the inclusion of VCO microemulsion. The swelling degree of GVCO hydrogel decreased as the VCO microemulsion increased and the water vapor transmission rate of GVCO hydrogels was comparable to commercial dressing in the range of 332–391 g m−2 d−1. The qualitative antibacterial activities do not show any inhibition against Gram-negative (Escherichia coli and Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. In vivo studies on Sprague–Dawley rats show the wound contraction of GVCO hydrogel is best (95 ± 2%) after the 14th day compared to a commercial dressing of Smith and Nephew Opsite post-op waterproof dressing, and this result is supported by the ultrasound images of wound skin and histological evaluation of the wound. The findings suggest that GVCO hydrogel has the potential to be developed as a biomedical material.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34641095</pmid><doi>10.3390/polym13193281</doi><orcidid>https://orcid.org/0000-0003-0551-015X</orcidid><orcidid>https://orcid.org/0000-0001-5325-5478</orcidid><orcidid>https://orcid.org/0000-0001-7477-0284</orcidid><orcidid>https://orcid.org/0000-0002-3259-9295</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2021-09, Vol.13 (19), p.3281
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512409
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Biocompatibility
Biomedical materials
Coconut oil
E coli
Expenditures
Fibroblasts
Gellan gum
Hydrogels
In vivo methods and tests
Klebsiella
Mechanical properties
Microemulsions
Modulus of elasticity
Phase diagrams
Physical properties
Skin
Spectrum analysis
Surfactants
Ternary systems
Thermodynamic properties
Water vapor
Wound healing
title Gellan Gum Hydrogels Filled Edible Oil Microemulsion for Biomedical Materials: Phase Diagram, Mechanical Behavior, and In Vivo Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gellan%20Gum%20Hydrogels%20Filled%20Edible%20Oil%20Microemulsion%20for%20Biomedical%20Materials:%20Phase%20Diagram,%20Mechanical%20Behavior,%20and%20In%20Vivo%20Studies&rft.jtitle=Polymers&rft.au=Muktar,%20Muhammad%20Zulhelmi&rft.date=2021-09-26&rft.volume=13&rft.issue=19&rft.spage=3281&rft.pages=3281-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13193281&rft_dat=%3Cproquest_pubme%3E2581015434%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581015434&rft_id=info:pmid/34641095&rfr_iscdi=true