Gellan Gum Hydrogels Filled Edible Oil Microemulsion for Biomedical Materials: Phase Diagram, Mechanical Behavior, and In Vivo Studies
The demand for wound care products, especially advanced and active wound care products is huge. In this study, gellan gum (GG) and virgin coconut oil (VCO) were utilized to develop microemulsion-based hydrogel for wound dressing materials. A ternary phase diagram was constructed to obtain an optimiz...
Gespeichert in:
Veröffentlicht in: | Polymers 2021-09, Vol.13 (19), p.3281 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 3281 |
container_title | Polymers |
container_volume | 13 |
creator | Muktar, Muhammad Zulhelmi Bakar, Muhammad Ameerul Amin Amin, Khairul Anuar Mat Che Rose, Laili Wan Ismail, Wan Iryani Razali, Mohd Hasmizam Abd Razak, Saiful Izwan in het Panhuis, Marc |
description | The demand for wound care products, especially advanced and active wound care products is huge. In this study, gellan gum (GG) and virgin coconut oil (VCO) were utilized to develop microemulsion-based hydrogel for wound dressing materials. A ternary phase diagram was constructed to obtain an optimized ratio of VCO, water, and surfactant to produce VCO microemulsion. The VCO microemulsion was incorporated into gellan gum (GG) hydrogel (GVCO) and their chemical interaction, mechanical performance, physical properties, and thermal behavior were examined. The stress-at-break (σ) and Young’s modulus (YM) of GVCO hydrogel films were increased along with thermal behavior with the inclusion of VCO microemulsion. The swelling degree of GVCO hydrogel decreased as the VCO microemulsion increased and the water vapor transmission rate of GVCO hydrogels was comparable to commercial dressing in the range of 332–391 g m−2 d−1. The qualitative antibacterial activities do not show any inhibition against Gram-negative (Escherichia coli and Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. In vivo studies on Sprague–Dawley rats show the wound contraction of GVCO hydrogel is best (95 ± 2%) after the 14th day compared to a commercial dressing of Smith and Nephew Opsite post-op waterproof dressing, and this result is supported by the ultrasound images of wound skin and histological evaluation of the wound. The findings suggest that GVCO hydrogel has the potential to be developed as a biomedical material. |
doi_str_mv | 10.3390/polym13193281 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581015434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-319fec355e3d14963506e4a1327d9302eba7f1ee0e5f0869986c911e098272623</originalsourceid><addsrcrecordid>eNpdkU1rHDEMhk1paUKaY--GXnrItLZle8Y9FJo02QQSUujH1XhnNLsOnvHWnlnYP9DfHWcTSlNdJNCjl1cSIW85-wBg2MdNDLuBAzcgGv6CHApWQyVBs5f_1AfkOOc7VkIqrXn9mhyA1JIzow7JnwWG4Ea6mAd6uetSXGHI9MKHgB097_wyIL31gd74NkUc5pB9HGkfEz31ccDOt6403YTJu5A_0W9rl5F-9W6V3HBCb7Bdu3EPneLabX1MJ9SNHb0a6S-_jfT7NHce8xvyqi_zePyUj8jPi_MfZ5fV9e3i6uzLddWCEVNVNu2xBaUQOi6NBsU0SsdB1J0BJnDp6p4jMlQ9a7QxjW4N58hMI2qhBRyRz4-6m3lZ3Lc4TskFu0l-cGlno_P2eWf0a7uKW9soLiQzReD9k0CKv2fMkx18bvc3xDhnK1TDm8KBLui7_9C7OKexrLenGFcSZKGqR6rcN-eE_V8znNmHJ9tnT4Z7cgKY6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581015434</pqid></control><display><type>article</type><title>Gellan Gum Hydrogels Filled Edible Oil Microemulsion for Biomedical Materials: Phase Diagram, Mechanical Behavior, and In Vivo Studies</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Muktar, Muhammad Zulhelmi ; Bakar, Muhammad Ameerul Amin ; Amin, Khairul Anuar Mat ; Che Rose, Laili ; Wan Ismail, Wan Iryani ; Razali, Mohd Hasmizam ; Abd Razak, Saiful Izwan ; in het Panhuis, Marc</creator><creatorcontrib>Muktar, Muhammad Zulhelmi ; Bakar, Muhammad Ameerul Amin ; Amin, Khairul Anuar Mat ; Che Rose, Laili ; Wan Ismail, Wan Iryani ; Razali, Mohd Hasmizam ; Abd Razak, Saiful Izwan ; in het Panhuis, Marc</creatorcontrib><description>The demand for wound care products, especially advanced and active wound care products is huge. In this study, gellan gum (GG) and virgin coconut oil (VCO) were utilized to develop microemulsion-based hydrogel for wound dressing materials. A ternary phase diagram was constructed to obtain an optimized ratio of VCO, water, and surfactant to produce VCO microemulsion. The VCO microemulsion was incorporated into gellan gum (GG) hydrogel (GVCO) and their chemical interaction, mechanical performance, physical properties, and thermal behavior were examined. The stress-at-break (σ) and Young’s modulus (YM) of GVCO hydrogel films were increased along with thermal behavior with the inclusion of VCO microemulsion. The swelling degree of GVCO hydrogel decreased as the VCO microemulsion increased and the water vapor transmission rate of GVCO hydrogels was comparable to commercial dressing in the range of 332–391 g m−2 d−1. The qualitative antibacterial activities do not show any inhibition against Gram-negative (Escherichia coli and Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. In vivo studies on Sprague–Dawley rats show the wound contraction of GVCO hydrogel is best (95 ± 2%) after the 14th day compared to a commercial dressing of Smith and Nephew Opsite post-op waterproof dressing, and this result is supported by the ultrasound images of wound skin and histological evaluation of the wound. The findings suggest that GVCO hydrogel has the potential to be developed as a biomedical material.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13193281</identifier><identifier>PMID: 34641095</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biocompatibility ; Biomedical materials ; Coconut oil ; E coli ; Expenditures ; Fibroblasts ; Gellan gum ; Hydrogels ; In vivo methods and tests ; Klebsiella ; Mechanical properties ; Microemulsions ; Modulus of elasticity ; Phase diagrams ; Physical properties ; Skin ; Spectrum analysis ; Surfactants ; Ternary systems ; Thermodynamic properties ; Water vapor ; Wound healing</subject><ispartof>Polymers, 2021-09, Vol.13 (19), p.3281</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-319fec355e3d14963506e4a1327d9302eba7f1ee0e5f0869986c911e098272623</citedby><cites>FETCH-LOGICAL-c392t-319fec355e3d14963506e4a1327d9302eba7f1ee0e5f0869986c911e098272623</cites><orcidid>0000-0003-0551-015X ; 0000-0001-5325-5478 ; 0000-0001-7477-0284 ; 0000-0002-3259-9295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512409/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512409/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids></links><search><creatorcontrib>Muktar, Muhammad Zulhelmi</creatorcontrib><creatorcontrib>Bakar, Muhammad Ameerul Amin</creatorcontrib><creatorcontrib>Amin, Khairul Anuar Mat</creatorcontrib><creatorcontrib>Che Rose, Laili</creatorcontrib><creatorcontrib>Wan Ismail, Wan Iryani</creatorcontrib><creatorcontrib>Razali, Mohd Hasmizam</creatorcontrib><creatorcontrib>Abd Razak, Saiful Izwan</creatorcontrib><creatorcontrib>in het Panhuis, Marc</creatorcontrib><title>Gellan Gum Hydrogels Filled Edible Oil Microemulsion for Biomedical Materials: Phase Diagram, Mechanical Behavior, and In Vivo Studies</title><title>Polymers</title><description>The demand for wound care products, especially advanced and active wound care products is huge. In this study, gellan gum (GG) and virgin coconut oil (VCO) were utilized to develop microemulsion-based hydrogel for wound dressing materials. A ternary phase diagram was constructed to obtain an optimized ratio of VCO, water, and surfactant to produce VCO microemulsion. The VCO microemulsion was incorporated into gellan gum (GG) hydrogel (GVCO) and their chemical interaction, mechanical performance, physical properties, and thermal behavior were examined. The stress-at-break (σ) and Young’s modulus (YM) of GVCO hydrogel films were increased along with thermal behavior with the inclusion of VCO microemulsion. The swelling degree of GVCO hydrogel decreased as the VCO microemulsion increased and the water vapor transmission rate of GVCO hydrogels was comparable to commercial dressing in the range of 332–391 g m−2 d−1. The qualitative antibacterial activities do not show any inhibition against Gram-negative (Escherichia coli and Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. In vivo studies on Sprague–Dawley rats show the wound contraction of GVCO hydrogel is best (95 ± 2%) after the 14th day compared to a commercial dressing of Smith and Nephew Opsite post-op waterproof dressing, and this result is supported by the ultrasound images of wound skin and histological evaluation of the wound. The findings suggest that GVCO hydrogel has the potential to be developed as a biomedical material.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Coconut oil</subject><subject>E coli</subject><subject>Expenditures</subject><subject>Fibroblasts</subject><subject>Gellan gum</subject><subject>Hydrogels</subject><subject>In vivo methods and tests</subject><subject>Klebsiella</subject><subject>Mechanical properties</subject><subject>Microemulsions</subject><subject>Modulus of elasticity</subject><subject>Phase diagrams</subject><subject>Physical properties</subject><subject>Skin</subject><subject>Spectrum analysis</subject><subject>Surfactants</subject><subject>Ternary systems</subject><subject>Thermodynamic properties</subject><subject>Water vapor</subject><subject>Wound healing</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1rHDEMhk1paUKaY--GXnrItLZle8Y9FJo02QQSUujH1XhnNLsOnvHWnlnYP9DfHWcTSlNdJNCjl1cSIW85-wBg2MdNDLuBAzcgGv6CHApWQyVBs5f_1AfkOOc7VkIqrXn9mhyA1JIzow7JnwWG4Ea6mAd6uetSXGHI9MKHgB097_wyIL31gd74NkUc5pB9HGkfEz31ccDOt6403YTJu5A_0W9rl5F-9W6V3HBCb7Bdu3EPneLabX1MJ9SNHb0a6S-_jfT7NHce8xvyqi_zePyUj8jPi_MfZ5fV9e3i6uzLddWCEVNVNu2xBaUQOi6NBsU0SsdB1J0BJnDp6p4jMlQ9a7QxjW4N58hMI2qhBRyRz4-6m3lZ3Lc4TskFu0l-cGlno_P2eWf0a7uKW9soLiQzReD9k0CKv2fMkx18bvc3xDhnK1TDm8KBLui7_9C7OKexrLenGFcSZKGqR6rcN-eE_V8znNmHJ9tnT4Z7cgKY6g</recordid><startdate>20210926</startdate><enddate>20210926</enddate><creator>Muktar, Muhammad Zulhelmi</creator><creator>Bakar, Muhammad Ameerul Amin</creator><creator>Amin, Khairul Anuar Mat</creator><creator>Che Rose, Laili</creator><creator>Wan Ismail, Wan Iryani</creator><creator>Razali, Mohd Hasmizam</creator><creator>Abd Razak, Saiful Izwan</creator><creator>in het Panhuis, Marc</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0551-015X</orcidid><orcidid>https://orcid.org/0000-0001-5325-5478</orcidid><orcidid>https://orcid.org/0000-0001-7477-0284</orcidid><orcidid>https://orcid.org/0000-0002-3259-9295</orcidid></search><sort><creationdate>20210926</creationdate><title>Gellan Gum Hydrogels Filled Edible Oil Microemulsion for Biomedical Materials: Phase Diagram, Mechanical Behavior, and In Vivo Studies</title><author>Muktar, Muhammad Zulhelmi ; Bakar, Muhammad Ameerul Amin ; Amin, Khairul Anuar Mat ; Che Rose, Laili ; Wan Ismail, Wan Iryani ; Razali, Mohd Hasmizam ; Abd Razak, Saiful Izwan ; in het Panhuis, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-319fec355e3d14963506e4a1327d9302eba7f1ee0e5f0869986c911e098272623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Coconut oil</topic><topic>E coli</topic><topic>Expenditures</topic><topic>Fibroblasts</topic><topic>Gellan gum</topic><topic>Hydrogels</topic><topic>In vivo methods and tests</topic><topic>Klebsiella</topic><topic>Mechanical properties</topic><topic>Microemulsions</topic><topic>Modulus of elasticity</topic><topic>Phase diagrams</topic><topic>Physical properties</topic><topic>Skin</topic><topic>Spectrum analysis</topic><topic>Surfactants</topic><topic>Ternary systems</topic><topic>Thermodynamic properties</topic><topic>Water vapor</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muktar, Muhammad Zulhelmi</creatorcontrib><creatorcontrib>Bakar, Muhammad Ameerul Amin</creatorcontrib><creatorcontrib>Amin, Khairul Anuar Mat</creatorcontrib><creatorcontrib>Che Rose, Laili</creatorcontrib><creatorcontrib>Wan Ismail, Wan Iryani</creatorcontrib><creatorcontrib>Razali, Mohd Hasmizam</creatorcontrib><creatorcontrib>Abd Razak, Saiful Izwan</creatorcontrib><creatorcontrib>in het Panhuis, Marc</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muktar, Muhammad Zulhelmi</au><au>Bakar, Muhammad Ameerul Amin</au><au>Amin, Khairul Anuar Mat</au><au>Che Rose, Laili</au><au>Wan Ismail, Wan Iryani</au><au>Razali, Mohd Hasmizam</au><au>Abd Razak, Saiful Izwan</au><au>in het Panhuis, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gellan Gum Hydrogels Filled Edible Oil Microemulsion for Biomedical Materials: Phase Diagram, Mechanical Behavior, and In Vivo Studies</atitle><jtitle>Polymers</jtitle><date>2021-09-26</date><risdate>2021</risdate><volume>13</volume><issue>19</issue><spage>3281</spage><pages>3281-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The demand for wound care products, especially advanced and active wound care products is huge. In this study, gellan gum (GG) and virgin coconut oil (VCO) were utilized to develop microemulsion-based hydrogel for wound dressing materials. A ternary phase diagram was constructed to obtain an optimized ratio of VCO, water, and surfactant to produce VCO microemulsion. The VCO microemulsion was incorporated into gellan gum (GG) hydrogel (GVCO) and their chemical interaction, mechanical performance, physical properties, and thermal behavior were examined. The stress-at-break (σ) and Young’s modulus (YM) of GVCO hydrogel films were increased along with thermal behavior with the inclusion of VCO microemulsion. The swelling degree of GVCO hydrogel decreased as the VCO microemulsion increased and the water vapor transmission rate of GVCO hydrogels was comparable to commercial dressing in the range of 332–391 g m−2 d−1. The qualitative antibacterial activities do not show any inhibition against Gram-negative (Escherichia coli and Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. In vivo studies on Sprague–Dawley rats show the wound contraction of GVCO hydrogel is best (95 ± 2%) after the 14th day compared to a commercial dressing of Smith and Nephew Opsite post-op waterproof dressing, and this result is supported by the ultrasound images of wound skin and histological evaluation of the wound. The findings suggest that GVCO hydrogel has the potential to be developed as a biomedical material.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34641095</pmid><doi>10.3390/polym13193281</doi><orcidid>https://orcid.org/0000-0003-0551-015X</orcidid><orcidid>https://orcid.org/0000-0001-5325-5478</orcidid><orcidid>https://orcid.org/0000-0001-7477-0284</orcidid><orcidid>https://orcid.org/0000-0002-3259-9295</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2021-09, Vol.13 (19), p.3281 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512409 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Biocompatibility Biomedical materials Coconut oil E coli Expenditures Fibroblasts Gellan gum Hydrogels In vivo methods and tests Klebsiella Mechanical properties Microemulsions Modulus of elasticity Phase diagrams Physical properties Skin Spectrum analysis Surfactants Ternary systems Thermodynamic properties Water vapor Wound healing |
title | Gellan Gum Hydrogels Filled Edible Oil Microemulsion for Biomedical Materials: Phase Diagram, Mechanical Behavior, and In Vivo Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gellan%20Gum%20Hydrogels%20Filled%20Edible%20Oil%20Microemulsion%20for%20Biomedical%20Materials:%20Phase%20Diagram,%20Mechanical%20Behavior,%20and%20In%20Vivo%20Studies&rft.jtitle=Polymers&rft.au=Muktar,%20Muhammad%20Zulhelmi&rft.date=2021-09-26&rft.volume=13&rft.issue=19&rft.spage=3281&rft.pages=3281-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13193281&rft_dat=%3Cproquest_pubme%3E2581015434%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581015434&rft_id=info:pmid/34641095&rfr_iscdi=true |