Chemical and Structural Changes by Gold Addition Using Recharge Method in NiW/Al2O3-CeO2-TiO2 Nanomaterials
NiWAu trimetallic nanoparticles (NPs) on the surface of support Al2O3-CeO2-TiO2 were synthesized by a three-step synthetic method in which Au NPs were incorporated into presynthesized NiW/Al2O3-CeO2-TiO2. The recharge method, also known as the redox method, was used to add 2.5 wt% gold. The Al2O3-Ce...
Gespeichert in:
Veröffentlicht in: | Materials 2021-09, Vol.14 (19), p.5470 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 5470 |
container_title | Materials |
container_volume | 14 |
creator | Cortez-Elizalde, Jorge Cuauhtémoc-López, Ignacio Guerra-Que, Zenaida Espinosa de los Monteros, Alejandra Elvira Lunagómez-Rocha, Ma. Antonia Silahua-Pavón, Adib Abiu Arévalo-Pérez, Juan Carlos Cordero-García, Adrián Cervantes-Uribe, Adrián Torres-Torres, José Gilberto |
description | NiWAu trimetallic nanoparticles (NPs) on the surface of support Al2O3-CeO2-TiO2 were synthesized by a three-step synthetic method in which Au NPs were incorporated into presynthesized NiW/Al2O3-CeO2-TiO2. The recharge method, also known as the redox method, was used to add 2.5 wt% gold. The Al2O3-CeO2-TiO2 support was made by a sol–gel method with two different compositions, and then two metals were simultaneously loaded (5 wt% nickel and 2.5 wt% tungsten) by two different methods, incipient wet impregnation and ultrasound impregnation method. In this paper, we study the effect of Au addition using the recharge method on NiW nanomaterials supported on mixed oxides on the physicochemical properties of synthesized nanomaterials. The prepared nanomaterials were characterized by scanning electron microscopy, BET specific surface area, X-ray diffraction, diffuse reflectance spectroscopy in the UV–visible range and temperature-programmed desorption of hydrogen. The experimental results showed that after loading of gold, the dispersion was higher (46% and 50%) with the trimetallic nanomaterials synthesized by incipient wet impregnation plus recharge method than with impregnation plus ultrasound recharge method, indicating a greater number of active trimetallic (NiWAu) sites in these materials. Small-sized Au from NiWAu/ACTU1 trimetallic nanostructures was enlarged for NiWAu/ACT1. The strong metal NPs–support interaction shown for the formation of NiAl2O4, Ni-W-O and Ni-Au-O species simultaneously present in the surface of trimetallic nanomaterial probably plays an important role in the degree of dispersion of the gold active phase. |
doi_str_mv | 10.3390/ma14195470 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8509746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581049863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-613b6d8280dec2e2ef68f0bbcefc7a3ef6cb9764a9b00a0c3f3744f9e90cb8983</originalsourceid><addsrcrecordid>eNpVUV1LwzAUDaKozL34CwK-CXVJk7XJizCKTmE68AMfQ5rertE10bQV9u-NbPhxX8693MO5HwehU0ouGJNk0mrKqZzynOyhYyplllDJ-f6f_AiNu-6VxGCMilQeoiPGMyZFlh-jt6KB1hq9xtpV-LEPg-mHEMui0W4FHS43eO7XFZ5Vle2td_i5s26FH8A0OqwA30Hf-Apbh-_ty2S2TpcsKWCZJk92meJ77XyrewhWr7sTdFBHgPEOR-j5-uqpuEkWy_ltMVskhgnWJxllZVaJVJAKTAop1JmoSVkaqE2uWSxNKfOMa1kSoolhNcs5ryVIYkohBRuhy63u-1C2UBlwfbxIvQfb6rBRXlv1v-Nso1b-U4kpkXl8zQid7QSC_xig69WrH4KLO6t0Kijh8Xcsss63LBN81wWofyZQor69Ub_esC-bAX_4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581049863</pqid></control><display><type>article</type><title>Chemical and Structural Changes by Gold Addition Using Recharge Method in NiW/Al2O3-CeO2-TiO2 Nanomaterials</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cortez-Elizalde, Jorge ; Cuauhtémoc-López, Ignacio ; Guerra-Que, Zenaida ; Espinosa de los Monteros, Alejandra Elvira ; Lunagómez-Rocha, Ma. Antonia ; Silahua-Pavón, Adib Abiu ; Arévalo-Pérez, Juan Carlos ; Cordero-García, Adrián ; Cervantes-Uribe, Adrián ; Torres-Torres, José Gilberto</creator><creatorcontrib>Cortez-Elizalde, Jorge ; Cuauhtémoc-López, Ignacio ; Guerra-Que, Zenaida ; Espinosa de los Monteros, Alejandra Elvira ; Lunagómez-Rocha, Ma. Antonia ; Silahua-Pavón, Adib Abiu ; Arévalo-Pérez, Juan Carlos ; Cordero-García, Adrián ; Cervantes-Uribe, Adrián ; Torres-Torres, José Gilberto</creatorcontrib><description>NiWAu trimetallic nanoparticles (NPs) on the surface of support Al2O3-CeO2-TiO2 were synthesized by a three-step synthetic method in which Au NPs were incorporated into presynthesized NiW/Al2O3-CeO2-TiO2. The recharge method, also known as the redox method, was used to add 2.5 wt% gold. The Al2O3-CeO2-TiO2 support was made by a sol–gel method with two different compositions, and then two metals were simultaneously loaded (5 wt% nickel and 2.5 wt% tungsten) by two different methods, incipient wet impregnation and ultrasound impregnation method. In this paper, we study the effect of Au addition using the recharge method on NiW nanomaterials supported on mixed oxides on the physicochemical properties of synthesized nanomaterials. The prepared nanomaterials were characterized by scanning electron microscopy, BET specific surface area, X-ray diffraction, diffuse reflectance spectroscopy in the UV–visible range and temperature-programmed desorption of hydrogen. The experimental results showed that after loading of gold, the dispersion was higher (46% and 50%) with the trimetallic nanomaterials synthesized by incipient wet impregnation plus recharge method than with impregnation plus ultrasound recharge method, indicating a greater number of active trimetallic (NiWAu) sites in these materials. Small-sized Au from NiWAu/ACTU1 trimetallic nanostructures was enlarged for NiWAu/ACT1. The strong metal NPs–support interaction shown for the formation of NiAl2O4, Ni-W-O and Ni-Au-O species simultaneously present in the surface of trimetallic nanomaterial probably plays an important role in the degree of dispersion of the gold active phase.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14195470</identifier><identifier>PMID: 34639867</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum ; Aluminum oxide ; Cerium oxides ; Dispersion ; Gold ; Hydrogen ; Impregnation ; Metals ; Methods ; Mixed oxides ; Nanomaterials ; Nanoparticles ; Nickel ; Nitrates ; Sol-gel processes ; Synthesis ; Titanium dioxide ; Ultrasonic imaging ; Ultrasonic testing</subject><ispartof>Materials, 2021-09, Vol.14 (19), p.5470</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-613b6d8280dec2e2ef68f0bbcefc7a3ef6cb9764a9b00a0c3f3744f9e90cb8983</citedby><cites>FETCH-LOGICAL-c383t-613b6d8280dec2e2ef68f0bbcefc7a3ef6cb9764a9b00a0c3f3744f9e90cb8983</cites><orcidid>0000-0001-8722-5058 ; 0000-0001-8389-7930 ; 0000-0003-1319-5380 ; 0000-0002-6108-1356 ; 0000-0003-1551-2570 ; 0000-0002-5325-6216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509746/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509746/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids></links><search><creatorcontrib>Cortez-Elizalde, Jorge</creatorcontrib><creatorcontrib>Cuauhtémoc-López, Ignacio</creatorcontrib><creatorcontrib>Guerra-Que, Zenaida</creatorcontrib><creatorcontrib>Espinosa de los Monteros, Alejandra Elvira</creatorcontrib><creatorcontrib>Lunagómez-Rocha, Ma. Antonia</creatorcontrib><creatorcontrib>Silahua-Pavón, Adib Abiu</creatorcontrib><creatorcontrib>Arévalo-Pérez, Juan Carlos</creatorcontrib><creatorcontrib>Cordero-García, Adrián</creatorcontrib><creatorcontrib>Cervantes-Uribe, Adrián</creatorcontrib><creatorcontrib>Torres-Torres, José Gilberto</creatorcontrib><title>Chemical and Structural Changes by Gold Addition Using Recharge Method in NiW/Al2O3-CeO2-TiO2 Nanomaterials</title><title>Materials</title><description>NiWAu trimetallic nanoparticles (NPs) on the surface of support Al2O3-CeO2-TiO2 were synthesized by a three-step synthetic method in which Au NPs were incorporated into presynthesized NiW/Al2O3-CeO2-TiO2. The recharge method, also known as the redox method, was used to add 2.5 wt% gold. The Al2O3-CeO2-TiO2 support was made by a sol–gel method with two different compositions, and then two metals were simultaneously loaded (5 wt% nickel and 2.5 wt% tungsten) by two different methods, incipient wet impregnation and ultrasound impregnation method. In this paper, we study the effect of Au addition using the recharge method on NiW nanomaterials supported on mixed oxides on the physicochemical properties of synthesized nanomaterials. The prepared nanomaterials were characterized by scanning electron microscopy, BET specific surface area, X-ray diffraction, diffuse reflectance spectroscopy in the UV–visible range and temperature-programmed desorption of hydrogen. The experimental results showed that after loading of gold, the dispersion was higher (46% and 50%) with the trimetallic nanomaterials synthesized by incipient wet impregnation plus recharge method than with impregnation plus ultrasound recharge method, indicating a greater number of active trimetallic (NiWAu) sites in these materials. Small-sized Au from NiWAu/ACTU1 trimetallic nanostructures was enlarged for NiWAu/ACT1. The strong metal NPs–support interaction shown for the formation of NiAl2O4, Ni-W-O and Ni-Au-O species simultaneously present in the surface of trimetallic nanomaterial probably plays an important role in the degree of dispersion of the gold active phase.</description><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Cerium oxides</subject><subject>Dispersion</subject><subject>Gold</subject><subject>Hydrogen</subject><subject>Impregnation</subject><subject>Metals</subject><subject>Methods</subject><subject>Mixed oxides</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Nitrates</subject><subject>Sol-gel processes</subject><subject>Synthesis</subject><subject>Titanium dioxide</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic testing</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVUV1LwzAUDaKozL34CwK-CXVJk7XJizCKTmE68AMfQ5rertE10bQV9u-NbPhxX8693MO5HwehU0ouGJNk0mrKqZzynOyhYyplllDJ-f6f_AiNu-6VxGCMilQeoiPGMyZFlh-jt6KB1hq9xtpV-LEPg-mHEMui0W4FHS43eO7XFZ5Vle2td_i5s26FH8A0OqwA30Hf-Apbh-_ty2S2TpcsKWCZJk92meJ77XyrewhWr7sTdFBHgPEOR-j5-uqpuEkWy_ltMVskhgnWJxllZVaJVJAKTAop1JmoSVkaqE2uWSxNKfOMa1kSoolhNcs5ryVIYkohBRuhy63u-1C2UBlwfbxIvQfb6rBRXlv1v-Nso1b-U4kpkXl8zQid7QSC_xig69WrH4KLO6t0Kijh8Xcsss63LBN81wWofyZQor69Ub_esC-bAX_4</recordid><startdate>20210922</startdate><enddate>20210922</enddate><creator>Cortez-Elizalde, Jorge</creator><creator>Cuauhtémoc-López, Ignacio</creator><creator>Guerra-Que, Zenaida</creator><creator>Espinosa de los Monteros, Alejandra Elvira</creator><creator>Lunagómez-Rocha, Ma. Antonia</creator><creator>Silahua-Pavón, Adib Abiu</creator><creator>Arévalo-Pérez, Juan Carlos</creator><creator>Cordero-García, Adrián</creator><creator>Cervantes-Uribe, Adrián</creator><creator>Torres-Torres, José Gilberto</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8722-5058</orcidid><orcidid>https://orcid.org/0000-0001-8389-7930</orcidid><orcidid>https://orcid.org/0000-0003-1319-5380</orcidid><orcidid>https://orcid.org/0000-0002-6108-1356</orcidid><orcidid>https://orcid.org/0000-0003-1551-2570</orcidid><orcidid>https://orcid.org/0000-0002-5325-6216</orcidid></search><sort><creationdate>20210922</creationdate><title>Chemical and Structural Changes by Gold Addition Using Recharge Method in NiW/Al2O3-CeO2-TiO2 Nanomaterials</title><author>Cortez-Elizalde, Jorge ; Cuauhtémoc-López, Ignacio ; Guerra-Que, Zenaida ; Espinosa de los Monteros, Alejandra Elvira ; Lunagómez-Rocha, Ma. Antonia ; Silahua-Pavón, Adib Abiu ; Arévalo-Pérez, Juan Carlos ; Cordero-García, Adrián ; Cervantes-Uribe, Adrián ; Torres-Torres, José Gilberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-613b6d8280dec2e2ef68f0bbcefc7a3ef6cb9764a9b00a0c3f3744f9e90cb8983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Cerium oxides</topic><topic>Dispersion</topic><topic>Gold</topic><topic>Hydrogen</topic><topic>Impregnation</topic><topic>Metals</topic><topic>Methods</topic><topic>Mixed oxides</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Nitrates</topic><topic>Sol-gel processes</topic><topic>Synthesis</topic><topic>Titanium dioxide</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cortez-Elizalde, Jorge</creatorcontrib><creatorcontrib>Cuauhtémoc-López, Ignacio</creatorcontrib><creatorcontrib>Guerra-Que, Zenaida</creatorcontrib><creatorcontrib>Espinosa de los Monteros, Alejandra Elvira</creatorcontrib><creatorcontrib>Lunagómez-Rocha, Ma. Antonia</creatorcontrib><creatorcontrib>Silahua-Pavón, Adib Abiu</creatorcontrib><creatorcontrib>Arévalo-Pérez, Juan Carlos</creatorcontrib><creatorcontrib>Cordero-García, Adrián</creatorcontrib><creatorcontrib>Cervantes-Uribe, Adrián</creatorcontrib><creatorcontrib>Torres-Torres, José Gilberto</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cortez-Elizalde, Jorge</au><au>Cuauhtémoc-López, Ignacio</au><au>Guerra-Que, Zenaida</au><au>Espinosa de los Monteros, Alejandra Elvira</au><au>Lunagómez-Rocha, Ma. Antonia</au><au>Silahua-Pavón, Adib Abiu</au><au>Arévalo-Pérez, Juan Carlos</au><au>Cordero-García, Adrián</au><au>Cervantes-Uribe, Adrián</au><au>Torres-Torres, José Gilberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical and Structural Changes by Gold Addition Using Recharge Method in NiW/Al2O3-CeO2-TiO2 Nanomaterials</atitle><jtitle>Materials</jtitle><date>2021-09-22</date><risdate>2021</risdate><volume>14</volume><issue>19</issue><spage>5470</spage><pages>5470-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>NiWAu trimetallic nanoparticles (NPs) on the surface of support Al2O3-CeO2-TiO2 were synthesized by a three-step synthetic method in which Au NPs were incorporated into presynthesized NiW/Al2O3-CeO2-TiO2. The recharge method, also known as the redox method, was used to add 2.5 wt% gold. The Al2O3-CeO2-TiO2 support was made by a sol–gel method with two different compositions, and then two metals were simultaneously loaded (5 wt% nickel and 2.5 wt% tungsten) by two different methods, incipient wet impregnation and ultrasound impregnation method. In this paper, we study the effect of Au addition using the recharge method on NiW nanomaterials supported on mixed oxides on the physicochemical properties of synthesized nanomaterials. The prepared nanomaterials were characterized by scanning electron microscopy, BET specific surface area, X-ray diffraction, diffuse reflectance spectroscopy in the UV–visible range and temperature-programmed desorption of hydrogen. The experimental results showed that after loading of gold, the dispersion was higher (46% and 50%) with the trimetallic nanomaterials synthesized by incipient wet impregnation plus recharge method than with impregnation plus ultrasound recharge method, indicating a greater number of active trimetallic (NiWAu) sites in these materials. Small-sized Au from NiWAu/ACTU1 trimetallic nanostructures was enlarged for NiWAu/ACT1. The strong metal NPs–support interaction shown for the formation of NiAl2O4, Ni-W-O and Ni-Au-O species simultaneously present in the surface of trimetallic nanomaterial probably plays an important role in the degree of dispersion of the gold active phase.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34639867</pmid><doi>10.3390/ma14195470</doi><orcidid>https://orcid.org/0000-0001-8722-5058</orcidid><orcidid>https://orcid.org/0000-0001-8389-7930</orcidid><orcidid>https://orcid.org/0000-0003-1319-5380</orcidid><orcidid>https://orcid.org/0000-0002-6108-1356</orcidid><orcidid>https://orcid.org/0000-0003-1551-2570</orcidid><orcidid>https://orcid.org/0000-0002-5325-6216</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-09, Vol.14 (19), p.5470 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8509746 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aluminum Aluminum oxide Cerium oxides Dispersion Gold Hydrogen Impregnation Metals Methods Mixed oxides Nanomaterials Nanoparticles Nickel Nitrates Sol-gel processes Synthesis Titanium dioxide Ultrasonic imaging Ultrasonic testing |
title | Chemical and Structural Changes by Gold Addition Using Recharge Method in NiW/Al2O3-CeO2-TiO2 Nanomaterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20and%20Structural%20Changes%20by%20Gold%20Addition%20Using%20Recharge%20Method%20in%20NiW/Al2O3-CeO2-TiO2%20Nanomaterials&rft.jtitle=Materials&rft.au=Cortez-Elizalde,%20Jorge&rft.date=2021-09-22&rft.volume=14&rft.issue=19&rft.spage=5470&rft.pages=5470-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14195470&rft_dat=%3Cproquest_pubme%3E2581049863%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581049863&rft_id=info:pmid/34639867&rfr_iscdi=true |