Material Monitoring of a Composite Dome Pavilion Made by Robotic Coreless Filament Winding
A hemispherical research demonstration pavilion was presented to the public from April to October 2019. It was the first large-scale lightweight dome with a supporting roof structure primarily made of carbon- and glass-fiber-reinforced composites, fabricated by robotic coreless filament winding. We...
Gespeichert in:
Veröffentlicht in: | Materials 2021-09, Vol.14 (19), p.5509 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 5509 |
container_title | Materials |
container_volume | 14 |
creator | Mindermann, Pascal Rongen, Bas Gubetini, Drilon Knippers, Jan Gresser, Götz T |
description | A hemispherical research demonstration pavilion was presented to the public from April to October 2019. It was the first large-scale lightweight dome with a supporting roof structure primarily made of carbon- and glass-fiber-reinforced composites, fabricated by robotic coreless filament winding. We conducted monitoring to ascertain the sturdiness of the fiber composite material of the supporting structure over the course of 130 days. This paper presents the methods and results of on-site monitoring as well as laboratory inspections. The thermal behavior of the pavilion was characterized, the color change of the matrix was quantified, and the inner composition of the coreless wound structures was investigated. This validated the structural design and revealed that the surface temperatures of the carbon fibers do not exceed the guideline values of flat, black façades and that UV absorbers need to be improved for such applications. |
doi_str_mv | 10.3390/ma14195509 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8509501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581043066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f43f89804176ea3d11671b5fcd6795cfe75443e7840cfc9637945fd3e637c6e63</originalsourceid><addsrcrecordid>eNpdkc1KAzEUhYMoKrUbH0ACbkQYTZpMZrIRpP6CRRFFcBPSzE2NzExqMhX69kZbtZpFciAfh3PvQWiXkiPGJDluNOVU5jmRa2ibSikyKjlfX9FbqB_jK0mHMVoO5CbaYlwwKQnbRs8j3UFwusYj37rOB9dOsLdY46Fvpj66DvCZbwDf6XdXO9_ika4Aj-f43o9950ziAtQQI75wtW6g7fCTa6tks4M2rK4j9JdvDz1enD8Mr7Kb28vr4elNZjgRXWY5s6UsCaeFAM0qSkVBx7k1lShkbiwUOecMipITY40UrJA8txWDpIxIdw-dLHyns3EDlUkRgq7VNLhGh7ny2qm_P617URP_rsq0tJzQZHCwNAj-bQaxU42LBupat-BnUQ3ykpZElAOS0P1_6KufhTaN90URzoj4THS4oEzwMQawP2EoUZ-tqd_WEry3Gv8H_e6IfQATc5GS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581043066</pqid></control><display><type>article</type><title>Material Monitoring of a Composite Dome Pavilion Made by Robotic Coreless Filament Winding</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mindermann, Pascal ; Rongen, Bas ; Gubetini, Drilon ; Knippers, Jan ; Gresser, Götz T</creator><creatorcontrib>Mindermann, Pascal ; Rongen, Bas ; Gubetini, Drilon ; Knippers, Jan ; Gresser, Götz T</creatorcontrib><description>A hemispherical research demonstration pavilion was presented to the public from April to October 2019. It was the first large-scale lightweight dome with a supporting roof structure primarily made of carbon- and glass-fiber-reinforced composites, fabricated by robotic coreless filament winding. We conducted monitoring to ascertain the sturdiness of the fiber composite material of the supporting structure over the course of 130 days. This paper presents the methods and results of on-site monitoring as well as laboratory inspections. The thermal behavior of the pavilion was characterized, the color change of the matrix was quantified, and the inner composition of the coreless wound structures was investigated. This validated the structural design and revealed that the surface temperatures of the carbon fibers do not exceed the guideline values of flat, black façades and that UV absorbers need to be improved for such applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14195509</identifier><identifier>PMID: 34639903</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Carbon ; Carbon fibers ; Composite materials ; Concrete construction ; Curing ; Domes (structural forms) ; Fiber composites ; Filament winding ; Load ; Manufacturing ; Monitoring ; Structural design ; Thermodynamic properties ; Winding</subject><ispartof>Materials, 2021-09, Vol.14 (19), p.5509</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f43f89804176ea3d11671b5fcd6795cfe75443e7840cfc9637945fd3e637c6e63</citedby><cites>FETCH-LOGICAL-c406t-f43f89804176ea3d11671b5fcd6795cfe75443e7840cfc9637945fd3e637c6e63</cites><orcidid>0000-0002-6683-8004 ; 0000-0001-6188-4899 ; 0000-0002-6929-9026 ; 0000-0002-1740-391X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509501/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509501/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34639903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mindermann, Pascal</creatorcontrib><creatorcontrib>Rongen, Bas</creatorcontrib><creatorcontrib>Gubetini, Drilon</creatorcontrib><creatorcontrib>Knippers, Jan</creatorcontrib><creatorcontrib>Gresser, Götz T</creatorcontrib><title>Material Monitoring of a Composite Dome Pavilion Made by Robotic Coreless Filament Winding</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>A hemispherical research demonstration pavilion was presented to the public from April to October 2019. It was the first large-scale lightweight dome with a supporting roof structure primarily made of carbon- and glass-fiber-reinforced composites, fabricated by robotic coreless filament winding. We conducted monitoring to ascertain the sturdiness of the fiber composite material of the supporting structure over the course of 130 days. This paper presents the methods and results of on-site monitoring as well as laboratory inspections. The thermal behavior of the pavilion was characterized, the color change of the matrix was quantified, and the inner composition of the coreless wound structures was investigated. This validated the structural design and revealed that the surface temperatures of the carbon fibers do not exceed the guideline values of flat, black façades and that UV absorbers need to be improved for such applications.</description><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Composite materials</subject><subject>Concrete construction</subject><subject>Curing</subject><subject>Domes (structural forms)</subject><subject>Fiber composites</subject><subject>Filament winding</subject><subject>Load</subject><subject>Manufacturing</subject><subject>Monitoring</subject><subject>Structural design</subject><subject>Thermodynamic properties</subject><subject>Winding</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1KAzEUhYMoKrUbH0ACbkQYTZpMZrIRpP6CRRFFcBPSzE2NzExqMhX69kZbtZpFciAfh3PvQWiXkiPGJDluNOVU5jmRa2ibSikyKjlfX9FbqB_jK0mHMVoO5CbaYlwwKQnbRs8j3UFwusYj37rOB9dOsLdY46Fvpj66DvCZbwDf6XdXO9_ika4Aj-f43o9950ziAtQQI75wtW6g7fCTa6tks4M2rK4j9JdvDz1enD8Mr7Kb28vr4elNZjgRXWY5s6UsCaeFAM0qSkVBx7k1lShkbiwUOecMipITY40UrJA8txWDpIxIdw-dLHyns3EDlUkRgq7VNLhGh7ny2qm_P617URP_rsq0tJzQZHCwNAj-bQaxU42LBupat-BnUQ3ykpZElAOS0P1_6KufhTaN90URzoj4THS4oEzwMQawP2EoUZ-tqd_WEry3Gv8H_e6IfQATc5GS</recordid><startdate>20210923</startdate><enddate>20210923</enddate><creator>Mindermann, Pascal</creator><creator>Rongen, Bas</creator><creator>Gubetini, Drilon</creator><creator>Knippers, Jan</creator><creator>Gresser, Götz T</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6683-8004</orcidid><orcidid>https://orcid.org/0000-0001-6188-4899</orcidid><orcidid>https://orcid.org/0000-0002-6929-9026</orcidid><orcidid>https://orcid.org/0000-0002-1740-391X</orcidid></search><sort><creationdate>20210923</creationdate><title>Material Monitoring of a Composite Dome Pavilion Made by Robotic Coreless Filament Winding</title><author>Mindermann, Pascal ; Rongen, Bas ; Gubetini, Drilon ; Knippers, Jan ; Gresser, Götz T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f43f89804176ea3d11671b5fcd6795cfe75443e7840cfc9637945fd3e637c6e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Composite materials</topic><topic>Concrete construction</topic><topic>Curing</topic><topic>Domes (structural forms)</topic><topic>Fiber composites</topic><topic>Filament winding</topic><topic>Load</topic><topic>Manufacturing</topic><topic>Monitoring</topic><topic>Structural design</topic><topic>Thermodynamic properties</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mindermann, Pascal</creatorcontrib><creatorcontrib>Rongen, Bas</creatorcontrib><creatorcontrib>Gubetini, Drilon</creatorcontrib><creatorcontrib>Knippers, Jan</creatorcontrib><creatorcontrib>Gresser, Götz T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mindermann, Pascal</au><au>Rongen, Bas</au><au>Gubetini, Drilon</au><au>Knippers, Jan</au><au>Gresser, Götz T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Material Monitoring of a Composite Dome Pavilion Made by Robotic Coreless Filament Winding</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-09-23</date><risdate>2021</risdate><volume>14</volume><issue>19</issue><spage>5509</spage><pages>5509-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>A hemispherical research demonstration pavilion was presented to the public from April to October 2019. It was the first large-scale lightweight dome with a supporting roof structure primarily made of carbon- and glass-fiber-reinforced composites, fabricated by robotic coreless filament winding. We conducted monitoring to ascertain the sturdiness of the fiber composite material of the supporting structure over the course of 130 days. This paper presents the methods and results of on-site monitoring as well as laboratory inspections. The thermal behavior of the pavilion was characterized, the color change of the matrix was quantified, and the inner composition of the coreless wound structures was investigated. This validated the structural design and revealed that the surface temperatures of the carbon fibers do not exceed the guideline values of flat, black façades and that UV absorbers need to be improved for such applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34639903</pmid><doi>10.3390/ma14195509</doi><orcidid>https://orcid.org/0000-0002-6683-8004</orcidid><orcidid>https://orcid.org/0000-0001-6188-4899</orcidid><orcidid>https://orcid.org/0000-0002-6929-9026</orcidid><orcidid>https://orcid.org/0000-0002-1740-391X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-09, Vol.14 (19), p.5509 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8509501 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Carbon Carbon fibers Composite materials Concrete construction Curing Domes (structural forms) Fiber composites Filament winding Load Manufacturing Monitoring Structural design Thermodynamic properties Winding |
title | Material Monitoring of a Composite Dome Pavilion Made by Robotic Coreless Filament Winding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Material%20Monitoring%20of%20a%20Composite%20Dome%20Pavilion%20Made%20by%20Robotic%20Coreless%20Filament%20Winding&rft.jtitle=Materials&rft.au=Mindermann,%20Pascal&rft.date=2021-09-23&rft.volume=14&rft.issue=19&rft.spage=5509&rft.pages=5509-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14195509&rft_dat=%3Cproquest_pubme%3E2581043066%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581043066&rft_id=info:pmid/34639903&rfr_iscdi=true |