Experimental and Numerical Investigations of Titanium Deposition for Cold Spray Additive Manufacturing as a Function of Standoff Distance
In this research, the cold spray process as an additive manufacturing method was applied to deposit thick titanium coatings onto 7075 aluminium alloy. An analysis of changes in the microstructure and mechanical properties of the coatings depending on the standoff distance was carried out to obtain t...
Gespeichert in:
Veröffentlicht in: | Materials 2021-09, Vol.14 (19), p.5492 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 5492 |
container_title | Materials |
container_volume | 14 |
creator | Żórawski, Wojciech Molak, Rafał Mądry, Janusz Sienicki, Jarosław Góral, Anna Makrenek, Medard Scendo, Mieczysław Dobosz, Romuald |
description | In this research, the cold spray process as an additive manufacturing method was applied to deposit thick titanium coatings onto 7075 aluminium alloy. An analysis of changes in the microstructure and mechanical properties of the coatings depending on the standoff distance was carried out to obtain the maximum deposition efficiency. The process parameters were selected in such a way as to ensure the spraying of irregular titanium powder at the highest velocity and temperature and changing the standoff distance from 20 to 100 mm. Experimental studies demonstrated that the standoff distance had a significant effect on the microstructure of the coatings and their adhesion. Moreover, its rise significantly increased the deposition efficiency. The standoff distance also significantly affected the coating microstructure and their adhesion to the substrate, but did not cause any changes in their phase composition. The standoff distance also influenced the coating porosity, which first decreased to a minimum level of 0.2% and then increased significantly to 9.8%. At the same time, the hardness of the coatings increased by 30%. Numerical simulations confirmed the results of the tests. |
doi_str_mv | 10.3390/ma14195492 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8509138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581811049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-604c0132c9e2bf610f2276330a735dc6d3e39efebc2e3eedc8fb93228c77a0d33</originalsourceid><addsrcrecordid>eNpdkV1PFDEUhhujEbJy4y9o4o0xWW17ZmemNyZkASUBvACvm7P9WEtm2rGdbuQn-K_tAlGhNz19z9sn54OQt5x9BJDs04i84XLVSPGCHHIp2yWXTfPyv_iAHOV8y-oB4L2Qr8kBNC3IXrJD8vv012STH22YcaAYDL0qYxV0fZ2Hnc2z3-LsY8g0OnrjZwy-jPTETjH7vU5dTHQdB0Ovp4R39NiYqu8svcRQHOq5JB-2FDNFelaCvv9TUdeVZKJz9MTnGmr7hrxyOGR79HgvyPez05v11-XFty_n6-OLpYYe5mXLGs04CC2t2LiWMydE1wIw7GBldGvAgrTObrSwYK3RvdtIEKLXXYfMACzI5wfuVDZjzdfOEw5qqkPAdKcievU0E_wPtY071a-Y5LWGBXn_CEjxZ6kTUqPP2g4DBhtLVmLV855z1shqfffMehtLCrW9excD0fE98MODS6eYc7LubzGcqf2S1b8lwx8uHJrD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581032718</pqid></control><display><type>article</type><title>Experimental and Numerical Investigations of Titanium Deposition for Cold Spray Additive Manufacturing as a Function of Standoff Distance</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Żórawski, Wojciech ; Molak, Rafał ; Mądry, Janusz ; Sienicki, Jarosław ; Góral, Anna ; Makrenek, Medard ; Scendo, Mieczysław ; Dobosz, Romuald</creator><creatorcontrib>Żórawski, Wojciech ; Molak, Rafał ; Mądry, Janusz ; Sienicki, Jarosław ; Góral, Anna ; Makrenek, Medard ; Scendo, Mieczysław ; Dobosz, Romuald</creatorcontrib><description>In this research, the cold spray process as an additive manufacturing method was applied to deposit thick titanium coatings onto 7075 aluminium alloy. An analysis of changes in the microstructure and mechanical properties of the coatings depending on the standoff distance was carried out to obtain the maximum deposition efficiency. The process parameters were selected in such a way as to ensure the spraying of irregular titanium powder at the highest velocity and temperature and changing the standoff distance from 20 to 100 mm. Experimental studies demonstrated that the standoff distance had a significant effect on the microstructure of the coatings and their adhesion. Moreover, its rise significantly increased the deposition efficiency. The standoff distance also significantly affected the coating microstructure and their adhesion to the substrate, but did not cause any changes in their phase composition. The standoff distance also influenced the coating porosity, which first decreased to a minimum level of 0.2% and then increased significantly to 9.8%. At the same time, the hardness of the coatings increased by 30%. Numerical simulations confirmed the results of the tests.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14195492</identifier><identifier>PMID: 34639890</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additive manufacturing ; Adhesion ; Aluminum base alloys ; Coatings ; Cold ; Deformation ; Deposition ; Efficiency ; Manufacturing ; Mechanical properties ; Microstructure ; Particle size ; Phase composition ; Powder spraying ; Process parameters ; Production methods ; Raw materials ; Simulation ; Substrates ; Technological change ; Titanium ; Velocity</subject><ispartof>Materials, 2021-09, Vol.14 (19), p.5492</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-604c0132c9e2bf610f2276330a735dc6d3e39efebc2e3eedc8fb93228c77a0d33</citedby><cites>FETCH-LOGICAL-c383t-604c0132c9e2bf610f2276330a735dc6d3e39efebc2e3eedc8fb93228c77a0d33</cites><orcidid>0000-0002-4860-0553 ; 0000-0001-7823-0496 ; 0000-0002-8975-4153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509138/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509138/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Żórawski, Wojciech</creatorcontrib><creatorcontrib>Molak, Rafał</creatorcontrib><creatorcontrib>Mądry, Janusz</creatorcontrib><creatorcontrib>Sienicki, Jarosław</creatorcontrib><creatorcontrib>Góral, Anna</creatorcontrib><creatorcontrib>Makrenek, Medard</creatorcontrib><creatorcontrib>Scendo, Mieczysław</creatorcontrib><creatorcontrib>Dobosz, Romuald</creatorcontrib><title>Experimental and Numerical Investigations of Titanium Deposition for Cold Spray Additive Manufacturing as a Function of Standoff Distance</title><title>Materials</title><description>In this research, the cold spray process as an additive manufacturing method was applied to deposit thick titanium coatings onto 7075 aluminium alloy. An analysis of changes in the microstructure and mechanical properties of the coatings depending on the standoff distance was carried out to obtain the maximum deposition efficiency. The process parameters were selected in such a way as to ensure the spraying of irregular titanium powder at the highest velocity and temperature and changing the standoff distance from 20 to 100 mm. Experimental studies demonstrated that the standoff distance had a significant effect on the microstructure of the coatings and their adhesion. Moreover, its rise significantly increased the deposition efficiency. The standoff distance also significantly affected the coating microstructure and their adhesion to the substrate, but did not cause any changes in their phase composition. The standoff distance also influenced the coating porosity, which first decreased to a minimum level of 0.2% and then increased significantly to 9.8%. At the same time, the hardness of the coatings increased by 30%. Numerical simulations confirmed the results of the tests.</description><subject>Additive manufacturing</subject><subject>Adhesion</subject><subject>Aluminum base alloys</subject><subject>Coatings</subject><subject>Cold</subject><subject>Deformation</subject><subject>Deposition</subject><subject>Efficiency</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Particle size</subject><subject>Phase composition</subject><subject>Powder spraying</subject><subject>Process parameters</subject><subject>Production methods</subject><subject>Raw materials</subject><subject>Simulation</subject><subject>Substrates</subject><subject>Technological change</subject><subject>Titanium</subject><subject>Velocity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1PFDEUhhujEbJy4y9o4o0xWW17ZmemNyZkASUBvACvm7P9WEtm2rGdbuQn-K_tAlGhNz19z9sn54OQt5x9BJDs04i84XLVSPGCHHIp2yWXTfPyv_iAHOV8y-oB4L2Qr8kBNC3IXrJD8vv012STH22YcaAYDL0qYxV0fZ2Hnc2z3-LsY8g0OnrjZwy-jPTETjH7vU5dTHQdB0Ovp4R39NiYqu8svcRQHOq5JB-2FDNFelaCvv9TUdeVZKJz9MTnGmr7hrxyOGR79HgvyPez05v11-XFty_n6-OLpYYe5mXLGs04CC2t2LiWMydE1wIw7GBldGvAgrTObrSwYK3RvdtIEKLXXYfMACzI5wfuVDZjzdfOEw5qqkPAdKcievU0E_wPtY071a-Y5LWGBXn_CEjxZ6kTUqPP2g4DBhtLVmLV855z1shqfffMehtLCrW9excD0fE98MODS6eYc7LubzGcqf2S1b8lwx8uHJrD</recordid><startdate>20210923</startdate><enddate>20210923</enddate><creator>Żórawski, Wojciech</creator><creator>Molak, Rafał</creator><creator>Mądry, Janusz</creator><creator>Sienicki, Jarosław</creator><creator>Góral, Anna</creator><creator>Makrenek, Medard</creator><creator>Scendo, Mieczysław</creator><creator>Dobosz, Romuald</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4860-0553</orcidid><orcidid>https://orcid.org/0000-0001-7823-0496</orcidid><orcidid>https://orcid.org/0000-0002-8975-4153</orcidid></search><sort><creationdate>20210923</creationdate><title>Experimental and Numerical Investigations of Titanium Deposition for Cold Spray Additive Manufacturing as a Function of Standoff Distance</title><author>Żórawski, Wojciech ; Molak, Rafał ; Mądry, Janusz ; Sienicki, Jarosław ; Góral, Anna ; Makrenek, Medard ; Scendo, Mieczysław ; Dobosz, Romuald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-604c0132c9e2bf610f2276330a735dc6d3e39efebc2e3eedc8fb93228c77a0d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing</topic><topic>Adhesion</topic><topic>Aluminum base alloys</topic><topic>Coatings</topic><topic>Cold</topic><topic>Deformation</topic><topic>Deposition</topic><topic>Efficiency</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Particle size</topic><topic>Phase composition</topic><topic>Powder spraying</topic><topic>Process parameters</topic><topic>Production methods</topic><topic>Raw materials</topic><topic>Simulation</topic><topic>Substrates</topic><topic>Technological change</topic><topic>Titanium</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Żórawski, Wojciech</creatorcontrib><creatorcontrib>Molak, Rafał</creatorcontrib><creatorcontrib>Mądry, Janusz</creatorcontrib><creatorcontrib>Sienicki, Jarosław</creatorcontrib><creatorcontrib>Góral, Anna</creatorcontrib><creatorcontrib>Makrenek, Medard</creatorcontrib><creatorcontrib>Scendo, Mieczysław</creatorcontrib><creatorcontrib>Dobosz, Romuald</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Żórawski, Wojciech</au><au>Molak, Rafał</au><au>Mądry, Janusz</au><au>Sienicki, Jarosław</au><au>Góral, Anna</au><au>Makrenek, Medard</au><au>Scendo, Mieczysław</au><au>Dobosz, Romuald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and Numerical Investigations of Titanium Deposition for Cold Spray Additive Manufacturing as a Function of Standoff Distance</atitle><jtitle>Materials</jtitle><date>2021-09-23</date><risdate>2021</risdate><volume>14</volume><issue>19</issue><spage>5492</spage><pages>5492-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this research, the cold spray process as an additive manufacturing method was applied to deposit thick titanium coatings onto 7075 aluminium alloy. An analysis of changes in the microstructure and mechanical properties of the coatings depending on the standoff distance was carried out to obtain the maximum deposition efficiency. The process parameters were selected in such a way as to ensure the spraying of irregular titanium powder at the highest velocity and temperature and changing the standoff distance from 20 to 100 mm. Experimental studies demonstrated that the standoff distance had a significant effect on the microstructure of the coatings and their adhesion. Moreover, its rise significantly increased the deposition efficiency. The standoff distance also significantly affected the coating microstructure and their adhesion to the substrate, but did not cause any changes in their phase composition. The standoff distance also influenced the coating porosity, which first decreased to a minimum level of 0.2% and then increased significantly to 9.8%. At the same time, the hardness of the coatings increased by 30%. Numerical simulations confirmed the results of the tests.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34639890</pmid><doi>10.3390/ma14195492</doi><orcidid>https://orcid.org/0000-0002-4860-0553</orcidid><orcidid>https://orcid.org/0000-0001-7823-0496</orcidid><orcidid>https://orcid.org/0000-0002-8975-4153</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-09, Vol.14 (19), p.5492 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8509138 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Additive manufacturing Adhesion Aluminum base alloys Coatings Cold Deformation Deposition Efficiency Manufacturing Mechanical properties Microstructure Particle size Phase composition Powder spraying Process parameters Production methods Raw materials Simulation Substrates Technological change Titanium Velocity |
title | Experimental and Numerical Investigations of Titanium Deposition for Cold Spray Additive Manufacturing as a Function of Standoff Distance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20Numerical%20Investigations%20of%20Titanium%20Deposition%20for%20Cold%20Spray%20Additive%20Manufacturing%20as%20a%20Function%20of%20Standoff%20Distance&rft.jtitle=Materials&rft.au=%C5%BB%C3%B3rawski,%20Wojciech&rft.date=2021-09-23&rft.volume=14&rft.issue=19&rft.spage=5492&rft.pages=5492-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14195492&rft_dat=%3Cproquest_pubme%3E2581811049%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581032718&rft_id=info:pmid/34639890&rfr_iscdi=true |