Anti-PD-1/Anti-PD-L1 Drugs and Radiation Therapy: Combinations and Optimization Strategies

Immune checkpoint inhibitors have been associated with long-term complete responses leading to improved overall survival in several cancer types. However, these novel immunotherapies are only effective in a small proportion of patients, and therapeutic resistance represents a major limitation in cli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2021-09, Vol.13 (19), p.4893
Hauptverfasser: Boustani, Jihane, Lecoester, Benoît, Baude, Jérémy, Latour, Charlène, Adotevi, Olivier, Mirjolet, Céline, Truc, Gilles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 4893
container_title Cancers
container_volume 13
creator Boustani, Jihane
Lecoester, Benoît
Baude, Jérémy
Latour, Charlène
Adotevi, Olivier
Mirjolet, Céline
Truc, Gilles
description Immune checkpoint inhibitors have been associated with long-term complete responses leading to improved overall survival in several cancer types. However, these novel immunotherapies are only effective in a small proportion of patients, and therapeutic resistance represents a major limitation in clinical practice. As with chemotherapy, there is substantial evidence that radiation therapy promotes anti-tumor immune responses that can enhance systemic responses to immune checkpoint inhibitors. In this review, we discuss the main preclinical and clinical evidence on strategies that can lead to an enhanced response to PD-1/PD-L1 blockade in combination with radiation therapy. We focused on central issues in optimizing radiation therapy, such as the optimal dose and fractionation for improving the therapeutic ratio, as well as the impact on immune and clinical responses of dose rate, target volume, lymph nodes irradiation, and type of radiation particle. We explored the addition of a third immunomodulatory agent to the combination such as other checkpoint inhibitors, chemotherapy, and treatment targeting the tumor microenvironment components. The strategies described in this review provide a lead for future clinical trials.
doi_str_mv 10.3390/cancers13194893
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8508444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581802139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-f4020f90b97d0e94bbcbdfce7988dab816dbc442ec0401f09cf3966fe0bd612a3</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxYMottSevS548bI22aTZxINQWr-gUNF68RKSbLZN6WZrsivUv96tW0U7lxlmfjze8AA4R_AKYw4HWjptfEAYccI4PgLdBKZJTCknx3_mDuiHsIJNYYxSmp6CDiYUM5zSLngbucrGT5MYDX6mKYomvl6ESLosepaZlZUtXTRfGi832-toXBbKuu9ly8w2lS3sZ4u9VF5WZmFNOAMnuVwH09_3Hni9u52PH-Lp7P5xPJrGGnNWxTmBCcw5VDzNoOFEKa2yXJuUM5ZJxRDNlCYkMRoSiHLIdY45pbmBKqMokbgHblrdTa0Kk2njGgtrsfG2kH4rSmnF_4uzS7EoPwQbQkYIaQQu9wK-fK9NqERhgzbrtXSmrINIhgwxmCDMG_TiAF2VtXfNezsK8jRBKWqoQUtpX4bgTf5rBkGxi04cRIe_AAQQjFI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580972171</pqid></control><display><type>article</type><title>Anti-PD-1/Anti-PD-L1 Drugs and Radiation Therapy: Combinations and Optimization Strategies</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Boustani, Jihane ; Lecoester, Benoît ; Baude, Jérémy ; Latour, Charlène ; Adotevi, Olivier ; Mirjolet, Céline ; Truc, Gilles</creator><creatorcontrib>Boustani, Jihane ; Lecoester, Benoît ; Baude, Jérémy ; Latour, Charlène ; Adotevi, Olivier ; Mirjolet, Céline ; Truc, Gilles</creatorcontrib><description>Immune checkpoint inhibitors have been associated with long-term complete responses leading to improved overall survival in several cancer types. However, these novel immunotherapies are only effective in a small proportion of patients, and therapeutic resistance represents a major limitation in clinical practice. As with chemotherapy, there is substantial evidence that radiation therapy promotes anti-tumor immune responses that can enhance systemic responses to immune checkpoint inhibitors. In this review, we discuss the main preclinical and clinical evidence on strategies that can lead to an enhanced response to PD-1/PD-L1 blockade in combination with radiation therapy. We focused on central issues in optimizing radiation therapy, such as the optimal dose and fractionation for improving the therapeutic ratio, as well as the impact on immune and clinical responses of dose rate, target volume, lymph nodes irradiation, and type of radiation particle. We explored the addition of a third immunomodulatory agent to the combination such as other checkpoint inhibitors, chemotherapy, and treatment targeting the tumor microenvironment components. The strategies described in this review provide a lead for future clinical trials.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers13194893</identifier><identifier>PMID: 34638376</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antibodies ; Apoptosis ; Cancer therapies ; Cell death ; Chemotherapy ; Clinical trials ; Colorectal cancer ; Drug dosages ; Fractionation ; Immune checkpoint inhibitors ; Immune response ; Immune system ; Immunogenicity ; Immunomodulation ; Immunosuppressive agents ; Immunotherapy ; Ligands ; Lymph nodes ; Lymphatic system ; Lymphocytes ; Optimization ; Patients ; PD-1 protein ; PD-L1 protein ; Radiation therapy ; Response rates ; Review ; Tumor microenvironment ; Tumors</subject><ispartof>Cancers, 2021-09, Vol.13 (19), p.4893</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-f4020f90b97d0e94bbcbdfce7988dab816dbc442ec0401f09cf3966fe0bd612a3</citedby><cites>FETCH-LOGICAL-c398t-f4020f90b97d0e94bbcbdfce7988dab816dbc442ec0401f09cf3966fe0bd612a3</cites><orcidid>0000-0001-6076-3112 ; 0000-0003-0047-9421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508444/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508444/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids></links><search><creatorcontrib>Boustani, Jihane</creatorcontrib><creatorcontrib>Lecoester, Benoît</creatorcontrib><creatorcontrib>Baude, Jérémy</creatorcontrib><creatorcontrib>Latour, Charlène</creatorcontrib><creatorcontrib>Adotevi, Olivier</creatorcontrib><creatorcontrib>Mirjolet, Céline</creatorcontrib><creatorcontrib>Truc, Gilles</creatorcontrib><title>Anti-PD-1/Anti-PD-L1 Drugs and Radiation Therapy: Combinations and Optimization Strategies</title><title>Cancers</title><description>Immune checkpoint inhibitors have been associated with long-term complete responses leading to improved overall survival in several cancer types. However, these novel immunotherapies are only effective in a small proportion of patients, and therapeutic resistance represents a major limitation in clinical practice. As with chemotherapy, there is substantial evidence that radiation therapy promotes anti-tumor immune responses that can enhance systemic responses to immune checkpoint inhibitors. In this review, we discuss the main preclinical and clinical evidence on strategies that can lead to an enhanced response to PD-1/PD-L1 blockade in combination with radiation therapy. We focused on central issues in optimizing radiation therapy, such as the optimal dose and fractionation for improving the therapeutic ratio, as well as the impact on immune and clinical responses of dose rate, target volume, lymph nodes irradiation, and type of radiation particle. We explored the addition of a third immunomodulatory agent to the combination such as other checkpoint inhibitors, chemotherapy, and treatment targeting the tumor microenvironment components. The strategies described in this review provide a lead for future clinical trials.</description><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Cancer therapies</subject><subject>Cell death</subject><subject>Chemotherapy</subject><subject>Clinical trials</subject><subject>Colorectal cancer</subject><subject>Drug dosages</subject><subject>Fractionation</subject><subject>Immune checkpoint inhibitors</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunogenicity</subject><subject>Immunomodulation</subject><subject>Immunosuppressive agents</subject><subject>Immunotherapy</subject><subject>Ligands</subject><subject>Lymph nodes</subject><subject>Lymphatic system</subject><subject>Lymphocytes</subject><subject>Optimization</subject><subject>Patients</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>Radiation therapy</subject><subject>Response rates</subject><subject>Review</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1LAzEQxYMottSevS548bI22aTZxINQWr-gUNF68RKSbLZN6WZrsivUv96tW0U7lxlmfjze8AA4R_AKYw4HWjptfEAYccI4PgLdBKZJTCknx3_mDuiHsIJNYYxSmp6CDiYUM5zSLngbucrGT5MYDX6mKYomvl6ESLosepaZlZUtXTRfGi832-toXBbKuu9ly8w2lS3sZ4u9VF5WZmFNOAMnuVwH09_3Hni9u52PH-Lp7P5xPJrGGnNWxTmBCcw5VDzNoOFEKa2yXJuUM5ZJxRDNlCYkMRoSiHLIdY45pbmBKqMokbgHblrdTa0Kk2njGgtrsfG2kH4rSmnF_4uzS7EoPwQbQkYIaQQu9wK-fK9NqERhgzbrtXSmrINIhgwxmCDMG_TiAF2VtXfNezsK8jRBKWqoQUtpX4bgTf5rBkGxi04cRIe_AAQQjFI</recordid><startdate>20210929</startdate><enddate>20210929</enddate><creator>Boustani, Jihane</creator><creator>Lecoester, Benoît</creator><creator>Baude, Jérémy</creator><creator>Latour, Charlène</creator><creator>Adotevi, Olivier</creator><creator>Mirjolet, Céline</creator><creator>Truc, Gilles</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6076-3112</orcidid><orcidid>https://orcid.org/0000-0003-0047-9421</orcidid></search><sort><creationdate>20210929</creationdate><title>Anti-PD-1/Anti-PD-L1 Drugs and Radiation Therapy: Combinations and Optimization Strategies</title><author>Boustani, Jihane ; Lecoester, Benoît ; Baude, Jérémy ; Latour, Charlène ; Adotevi, Olivier ; Mirjolet, Céline ; Truc, Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-f4020f90b97d0e94bbcbdfce7988dab816dbc442ec0401f09cf3966fe0bd612a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Cancer therapies</topic><topic>Cell death</topic><topic>Chemotherapy</topic><topic>Clinical trials</topic><topic>Colorectal cancer</topic><topic>Drug dosages</topic><topic>Fractionation</topic><topic>Immune checkpoint inhibitors</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunogenicity</topic><topic>Immunomodulation</topic><topic>Immunosuppressive agents</topic><topic>Immunotherapy</topic><topic>Ligands</topic><topic>Lymph nodes</topic><topic>Lymphatic system</topic><topic>Lymphocytes</topic><topic>Optimization</topic><topic>Patients</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>Radiation therapy</topic><topic>Response rates</topic><topic>Review</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boustani, Jihane</creatorcontrib><creatorcontrib>Lecoester, Benoît</creatorcontrib><creatorcontrib>Baude, Jérémy</creatorcontrib><creatorcontrib>Latour, Charlène</creatorcontrib><creatorcontrib>Adotevi, Olivier</creatorcontrib><creatorcontrib>Mirjolet, Céline</creatorcontrib><creatorcontrib>Truc, Gilles</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boustani, Jihane</au><au>Lecoester, Benoît</au><au>Baude, Jérémy</au><au>Latour, Charlène</au><au>Adotevi, Olivier</au><au>Mirjolet, Céline</au><au>Truc, Gilles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-PD-1/Anti-PD-L1 Drugs and Radiation Therapy: Combinations and Optimization Strategies</atitle><jtitle>Cancers</jtitle><date>2021-09-29</date><risdate>2021</risdate><volume>13</volume><issue>19</issue><spage>4893</spage><pages>4893-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Immune checkpoint inhibitors have been associated with long-term complete responses leading to improved overall survival in several cancer types. However, these novel immunotherapies are only effective in a small proportion of patients, and therapeutic resistance represents a major limitation in clinical practice. As with chemotherapy, there is substantial evidence that radiation therapy promotes anti-tumor immune responses that can enhance systemic responses to immune checkpoint inhibitors. In this review, we discuss the main preclinical and clinical evidence on strategies that can lead to an enhanced response to PD-1/PD-L1 blockade in combination with radiation therapy. We focused on central issues in optimizing radiation therapy, such as the optimal dose and fractionation for improving the therapeutic ratio, as well as the impact on immune and clinical responses of dose rate, target volume, lymph nodes irradiation, and type of radiation particle. We explored the addition of a third immunomodulatory agent to the combination such as other checkpoint inhibitors, chemotherapy, and treatment targeting the tumor microenvironment components. The strategies described in this review provide a lead for future clinical trials.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34638376</pmid><doi>10.3390/cancers13194893</doi><orcidid>https://orcid.org/0000-0001-6076-3112</orcidid><orcidid>https://orcid.org/0000-0003-0047-9421</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2021-09, Vol.13 (19), p.4893
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8508444
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Antibodies
Apoptosis
Cancer therapies
Cell death
Chemotherapy
Clinical trials
Colorectal cancer
Drug dosages
Fractionation
Immune checkpoint inhibitors
Immune response
Immune system
Immunogenicity
Immunomodulation
Immunosuppressive agents
Immunotherapy
Ligands
Lymph nodes
Lymphatic system
Lymphocytes
Optimization
Patients
PD-1 protein
PD-L1 protein
Radiation therapy
Response rates
Review
Tumor microenvironment
Tumors
title Anti-PD-1/Anti-PD-L1 Drugs and Radiation Therapy: Combinations and Optimization Strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A04%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-PD-1/Anti-PD-L1%20Drugs%20and%20Radiation%20Therapy:%20Combinations%20and%20Optimization%20Strategies&rft.jtitle=Cancers&rft.au=Boustani,%20Jihane&rft.date=2021-09-29&rft.volume=13&rft.issue=19&rft.spage=4893&rft.pages=4893-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers13194893&rft_dat=%3Cproquest_pubme%3E2581802139%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580972171&rft_id=info:pmid/34638376&rfr_iscdi=true