Investigation of US Cyclospora cayetanensis outbreaks in 2019 and evaluation of an improved Cyclospora genotyping system against 2019 cyclosporiasis outbreak clusters
Cyclosporiasis is an illness characterised by watery diarrhoea caused by the food-borne parasite Cyclospora cayetanensis. The increase in annual US cyclosporiasis cases led public health agencies to develop genotyping tools that aid outbreak investigations. A team at the Centers for Disease Control...
Gespeichert in:
Veröffentlicht in: | Epidemiology and infection 2021-09, Vol.149, p.e214-e214, Article e214 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e214 |
---|---|
container_issue | |
container_start_page | e214 |
container_title | Epidemiology and infection |
container_volume | 149 |
creator | Barratt, Joel Houghton, Katelyn Richins, Travis Straily, Anne Threlkel, Ryan Bera, Betelehem Kenneally, Jayne Clemons, Brooke Madison-Antenucci, Susan Cebelinski, Elizabeth Whitney, Brooke M. Kreil, Katherine R. Cama, Vitaliano Arrowood, Michael J. Qvarnstrom, Yvonne |
description | Cyclosporiasis is an illness characterised by watery diarrhoea caused by the food-borne parasite Cyclospora cayetanensis. The increase in annual US cyclosporiasis cases led public health agencies to develop genotyping tools that aid outbreak investigations. A team at the Centers for Disease Control and Prevention (CDC) developed a system based on deep amplicon sequencing and machine learning, for detecting genetically-related clusters of cyclosporiasis to aid epidemiologic investigations. An evaluation of this system during 2018 supported its robustness, indicating that it possessed sufficient utility to warrant further evaluation. However, the earliest version of CDC's system had some limitations from a bioinformatics standpoint. Namely, reliance on proprietary software, the inability to detect novel haplotypes and absence of a strategy to select an appropriate number of discrete genetic clusters would limit the system's future deployment potential. We recently introduced several improvements that address these limitations and the aim of this study was to reassess the system's performance to ensure that the changes introduced had no observable negative impacts. Comparison of epidemiologically-defined cyclosporiasis clusters from 2019 to analogous genetic clusters detected using CDC's improved system reaffirmed its excellent sensitivity (90%) and specificity (99%), and confirmed its high discriminatory power. This C. cayetanensis genotyping system is robust and with ongoing improvement will form the basis of a US-wide C. cayetanensis genotyping network for clinical specimens. |
doi_str_mv | 10.1017/S0950268821002090 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8506454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0950268821002090</cupid><sourcerecordid>2578970177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-c96469d5d94b475929da179b8a9f0acfbf6952578a3616661d4e619ce586431c3</originalsourceid><addsrcrecordid>eNp1ks1u1DAUhS0EokPLA7CzxIZNiu3Yjr1BQqNCK1Xqou06unGc4JLYwU5GygvxnHg0QylUrLw43znX9wehd5ScU0Krj7dEC8KkUowSwogmL9CGcqkLzol-iTZ7udjrJ-hNSg-EEM1U9RqdlFxQSgXZoJ9XfmfT7HqYXfA4dPj-Fm9XM4Q0hQjYwGpn8NYnl3BY5iZa-J6w85gRqjH4FtsdDMujHTx24xTDzrZPc3rrw7xOzvc4rWm2I4YenE_zIcf8Jh08LYTNsGQ4pjP0qoMh2bfH9xTdf7m4214W1zdfr7afrwvDuZoLo2VuvxWt5g2vhGa6BVrpRoHuCJiu6aQWTFQKSkmllLTlVlJtrFCSl9SUp-jTIXdamtG2xvo5wlBP0Y0Q1zqAq_9WvPtW92FXK0EkFzwHfDgGxPBjyZOtR5eMHYY8w7CkOhdnjFWKkYy-_wd9CEv0ub09pXSVV1xlih4oE0NK0XaPn6Gk3l9B_ewKsqc8emBsomt7-yf6_65fVR21ug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578970177</pqid></control><display><type>article</type><title>Investigation of US Cyclospora cayetanensis outbreaks in 2019 and evaluation of an improved Cyclospora genotyping system against 2019 cyclosporiasis outbreak clusters</title><source>Cambridge Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Barratt, Joel ; Houghton, Katelyn ; Richins, Travis ; Straily, Anne ; Threlkel, Ryan ; Bera, Betelehem ; Kenneally, Jayne ; Clemons, Brooke ; Madison-Antenucci, Susan ; Cebelinski, Elizabeth ; Whitney, Brooke M. ; Kreil, Katherine R. ; Cama, Vitaliano ; Arrowood, Michael J. ; Qvarnstrom, Yvonne</creator><creatorcontrib>Barratt, Joel ; Houghton, Katelyn ; Richins, Travis ; Straily, Anne ; Threlkel, Ryan ; Bera, Betelehem ; Kenneally, Jayne ; Clemons, Brooke ; Madison-Antenucci, Susan ; Cebelinski, Elizabeth ; Whitney, Brooke M. ; Kreil, Katherine R. ; Cama, Vitaliano ; Arrowood, Michael J. ; Qvarnstrom, Yvonne</creatorcontrib><description>Cyclosporiasis is an illness characterised by watery diarrhoea caused by the food-borne parasite Cyclospora cayetanensis. The increase in annual US cyclosporiasis cases led public health agencies to develop genotyping tools that aid outbreak investigations. A team at the Centers for Disease Control and Prevention (CDC) developed a system based on deep amplicon sequencing and machine learning, for detecting genetically-related clusters of cyclosporiasis to aid epidemiologic investigations. An evaluation of this system during 2018 supported its robustness, indicating that it possessed sufficient utility to warrant further evaluation. However, the earliest version of CDC's system had some limitations from a bioinformatics standpoint. Namely, reliance on proprietary software, the inability to detect novel haplotypes and absence of a strategy to select an appropriate number of discrete genetic clusters would limit the system's future deployment potential. We recently introduced several improvements that address these limitations and the aim of this study was to reassess the system's performance to ensure that the changes introduced had no observable negative impacts. Comparison of epidemiologically-defined cyclosporiasis clusters from 2019 to analogous genetic clusters detected using CDC's improved system reaffirmed its excellent sensitivity (90%) and specificity (99%), and confirmed its high discriminatory power. This C. cayetanensis genotyping system is robust and with ongoing improvement will form the basis of a US-wide C. cayetanensis genotyping network for clinical specimens.</description><identifier>ISSN: 0950-2688</identifier><identifier>EISSN: 1469-4409</identifier><identifier>DOI: 10.1017/S0950268821002090</identifier><identifier>PMID: 34511150</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Bioinformatics ; Clusters ; Cyclospora cayetanensis ; Cyclosporiasis ; Diarrhea ; Disease control ; Epidemics ; Epidemiology ; Food contamination & poisoning ; Genotyping ; Haplotypes ; Learning algorithms ; Machine learning ; Medical laboratories ; Original Paper ; Outbreaks ; Parasites ; Public health ; Sequences ; Software</subject><ispartof>Epidemiology and infection, 2021-09, Vol.149, p.e214-e214, Article e214</ispartof><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press</rights><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution – Non-Commercial – Share Alike License http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021 2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-c96469d5d94b475929da179b8a9f0acfbf6952578a3616661d4e619ce586431c3</citedby><cites>FETCH-LOGICAL-c448t-c96469d5d94b475929da179b8a9f0acfbf6952578a3616661d4e619ce586431c3</cites><orcidid>0000-0001-8711-2408 ; 0000-0002-9466-6414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8506454/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0950268821002090/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,23298,27903,27904,53770,53772,55783</link.rule.ids></links><search><creatorcontrib>Barratt, Joel</creatorcontrib><creatorcontrib>Houghton, Katelyn</creatorcontrib><creatorcontrib>Richins, Travis</creatorcontrib><creatorcontrib>Straily, Anne</creatorcontrib><creatorcontrib>Threlkel, Ryan</creatorcontrib><creatorcontrib>Bera, Betelehem</creatorcontrib><creatorcontrib>Kenneally, Jayne</creatorcontrib><creatorcontrib>Clemons, Brooke</creatorcontrib><creatorcontrib>Madison-Antenucci, Susan</creatorcontrib><creatorcontrib>Cebelinski, Elizabeth</creatorcontrib><creatorcontrib>Whitney, Brooke M.</creatorcontrib><creatorcontrib>Kreil, Katherine R.</creatorcontrib><creatorcontrib>Cama, Vitaliano</creatorcontrib><creatorcontrib>Arrowood, Michael J.</creatorcontrib><creatorcontrib>Qvarnstrom, Yvonne</creatorcontrib><title>Investigation of US Cyclospora cayetanensis outbreaks in 2019 and evaluation of an improved Cyclospora genotyping system against 2019 cyclosporiasis outbreak clusters</title><title>Epidemiology and infection</title><addtitle>Epidemiol. Infect</addtitle><description>Cyclosporiasis is an illness characterised by watery diarrhoea caused by the food-borne parasite Cyclospora cayetanensis. The increase in annual US cyclosporiasis cases led public health agencies to develop genotyping tools that aid outbreak investigations. A team at the Centers for Disease Control and Prevention (CDC) developed a system based on deep amplicon sequencing and machine learning, for detecting genetically-related clusters of cyclosporiasis to aid epidemiologic investigations. An evaluation of this system during 2018 supported its robustness, indicating that it possessed sufficient utility to warrant further evaluation. However, the earliest version of CDC's system had some limitations from a bioinformatics standpoint. Namely, reliance on proprietary software, the inability to detect novel haplotypes and absence of a strategy to select an appropriate number of discrete genetic clusters would limit the system's future deployment potential. We recently introduced several improvements that address these limitations and the aim of this study was to reassess the system's performance to ensure that the changes introduced had no observable negative impacts. Comparison of epidemiologically-defined cyclosporiasis clusters from 2019 to analogous genetic clusters detected using CDC's improved system reaffirmed its excellent sensitivity (90%) and specificity (99%), and confirmed its high discriminatory power. This C. cayetanensis genotyping system is robust and with ongoing improvement will form the basis of a US-wide C. cayetanensis genotyping network for clinical specimens.</description><subject>Bioinformatics</subject><subject>Clusters</subject><subject>Cyclospora cayetanensis</subject><subject>Cyclosporiasis</subject><subject>Diarrhea</subject><subject>Disease control</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Food contamination & poisoning</subject><subject>Genotyping</subject><subject>Haplotypes</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medical laboratories</subject><subject>Original Paper</subject><subject>Outbreaks</subject><subject>Parasites</subject><subject>Public health</subject><subject>Sequences</subject><subject>Software</subject><issn>0950-2688</issn><issn>1469-4409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1ks1u1DAUhS0EokPLA7CzxIZNiu3Yjr1BQqNCK1Xqou06unGc4JLYwU5GygvxnHg0QylUrLw43znX9wehd5ScU0Krj7dEC8KkUowSwogmL9CGcqkLzol-iTZ7udjrJ-hNSg-EEM1U9RqdlFxQSgXZoJ9XfmfT7HqYXfA4dPj-Fm9XM4Q0hQjYwGpn8NYnl3BY5iZa-J6w85gRqjH4FtsdDMujHTx24xTDzrZPc3rrw7xOzvc4rWm2I4YenE_zIcf8Jh08LYTNsGQ4pjP0qoMh2bfH9xTdf7m4214W1zdfr7afrwvDuZoLo2VuvxWt5g2vhGa6BVrpRoHuCJiu6aQWTFQKSkmllLTlVlJtrFCSl9SUp-jTIXdamtG2xvo5wlBP0Y0Q1zqAq_9WvPtW92FXK0EkFzwHfDgGxPBjyZOtR5eMHYY8w7CkOhdnjFWKkYy-_wd9CEv0ub09pXSVV1xlih4oE0NK0XaPn6Gk3l9B_ewKsqc8emBsomt7-yf6_65fVR21ug</recordid><startdate>20210913</startdate><enddate>20210913</enddate><creator>Barratt, Joel</creator><creator>Houghton, Katelyn</creator><creator>Richins, Travis</creator><creator>Straily, Anne</creator><creator>Threlkel, Ryan</creator><creator>Bera, Betelehem</creator><creator>Kenneally, Jayne</creator><creator>Clemons, Brooke</creator><creator>Madison-Antenucci, Susan</creator><creator>Cebelinski, Elizabeth</creator><creator>Whitney, Brooke M.</creator><creator>Kreil, Katherine R.</creator><creator>Cama, Vitaliano</creator><creator>Arrowood, Michael J.</creator><creator>Qvarnstrom, Yvonne</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T2</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8711-2408</orcidid><orcidid>https://orcid.org/0000-0002-9466-6414</orcidid></search><sort><creationdate>20210913</creationdate><title>Investigation of US Cyclospora cayetanensis outbreaks in 2019 and evaluation of an improved Cyclospora genotyping system against 2019 cyclosporiasis outbreak clusters</title><author>Barratt, Joel ; Houghton, Katelyn ; Richins, Travis ; Straily, Anne ; Threlkel, Ryan ; Bera, Betelehem ; Kenneally, Jayne ; Clemons, Brooke ; Madison-Antenucci, Susan ; Cebelinski, Elizabeth ; Whitney, Brooke M. ; Kreil, Katherine R. ; Cama, Vitaliano ; Arrowood, Michael J. ; Qvarnstrom, Yvonne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-c96469d5d94b475929da179b8a9f0acfbf6952578a3616661d4e619ce586431c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioinformatics</topic><topic>Clusters</topic><topic>Cyclospora cayetanensis</topic><topic>Cyclosporiasis</topic><topic>Diarrhea</topic><topic>Disease control</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Food contamination & poisoning</topic><topic>Genotyping</topic><topic>Haplotypes</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medical laboratories</topic><topic>Original Paper</topic><topic>Outbreaks</topic><topic>Parasites</topic><topic>Public health</topic><topic>Sequences</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barratt, Joel</creatorcontrib><creatorcontrib>Houghton, Katelyn</creatorcontrib><creatorcontrib>Richins, Travis</creatorcontrib><creatorcontrib>Straily, Anne</creatorcontrib><creatorcontrib>Threlkel, Ryan</creatorcontrib><creatorcontrib>Bera, Betelehem</creatorcontrib><creatorcontrib>Kenneally, Jayne</creatorcontrib><creatorcontrib>Clemons, Brooke</creatorcontrib><creatorcontrib>Madison-Antenucci, Susan</creatorcontrib><creatorcontrib>Cebelinski, Elizabeth</creatorcontrib><creatorcontrib>Whitney, Brooke M.</creatorcontrib><creatorcontrib>Kreil, Katherine R.</creatorcontrib><creatorcontrib>Cama, Vitaliano</creatorcontrib><creatorcontrib>Arrowood, Michael J.</creatorcontrib><creatorcontrib>Qvarnstrom, Yvonne</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing & Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Epidemiology and infection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barratt, Joel</au><au>Houghton, Katelyn</au><au>Richins, Travis</au><au>Straily, Anne</au><au>Threlkel, Ryan</au><au>Bera, Betelehem</au><au>Kenneally, Jayne</au><au>Clemons, Brooke</au><au>Madison-Antenucci, Susan</au><au>Cebelinski, Elizabeth</au><au>Whitney, Brooke M.</au><au>Kreil, Katherine R.</au><au>Cama, Vitaliano</au><au>Arrowood, Michael J.</au><au>Qvarnstrom, Yvonne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of US Cyclospora cayetanensis outbreaks in 2019 and evaluation of an improved Cyclospora genotyping system against 2019 cyclosporiasis outbreak clusters</atitle><jtitle>Epidemiology and infection</jtitle><addtitle>Epidemiol. Infect</addtitle><date>2021-09-13</date><risdate>2021</risdate><volume>149</volume><spage>e214</spage><epage>e214</epage><pages>e214-e214</pages><artnum>e214</artnum><issn>0950-2688</issn><eissn>1469-4409</eissn><abstract>Cyclosporiasis is an illness characterised by watery diarrhoea caused by the food-borne parasite Cyclospora cayetanensis. The increase in annual US cyclosporiasis cases led public health agencies to develop genotyping tools that aid outbreak investigations. A team at the Centers for Disease Control and Prevention (CDC) developed a system based on deep amplicon sequencing and machine learning, for detecting genetically-related clusters of cyclosporiasis to aid epidemiologic investigations. An evaluation of this system during 2018 supported its robustness, indicating that it possessed sufficient utility to warrant further evaluation. However, the earliest version of CDC's system had some limitations from a bioinformatics standpoint. Namely, reliance on proprietary software, the inability to detect novel haplotypes and absence of a strategy to select an appropriate number of discrete genetic clusters would limit the system's future deployment potential. We recently introduced several improvements that address these limitations and the aim of this study was to reassess the system's performance to ensure that the changes introduced had no observable negative impacts. Comparison of epidemiologically-defined cyclosporiasis clusters from 2019 to analogous genetic clusters detected using CDC's improved system reaffirmed its excellent sensitivity (90%) and specificity (99%), and confirmed its high discriminatory power. This C. cayetanensis genotyping system is robust and with ongoing improvement will form the basis of a US-wide C. cayetanensis genotyping network for clinical specimens.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>34511150</pmid><doi>10.1017/S0950268821002090</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8711-2408</orcidid><orcidid>https://orcid.org/0000-0002-9466-6414</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-2688 |
ispartof | Epidemiology and infection, 2021-09, Vol.149, p.e214-e214, Article e214 |
issn | 0950-2688 1469-4409 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8506454 |
source | Cambridge Journals Open Access; DOAJ Directory of Open Access Journals; PubMed Central |
subjects | Bioinformatics Clusters Cyclospora cayetanensis Cyclosporiasis Diarrhea Disease control Epidemics Epidemiology Food contamination & poisoning Genotyping Haplotypes Learning algorithms Machine learning Medical laboratories Original Paper Outbreaks Parasites Public health Sequences Software |
title | Investigation of US Cyclospora cayetanensis outbreaks in 2019 and evaluation of an improved Cyclospora genotyping system against 2019 cyclosporiasis outbreak clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20US%20Cyclospora%20cayetanensis%20outbreaks%20in%202019%20and%20evaluation%20of%20an%20improved%20Cyclospora%20genotyping%20system%20against%202019%20cyclosporiasis%20outbreak%20clusters&rft.jtitle=Epidemiology%20and%20infection&rft.au=Barratt,%20Joel&rft.date=2021-09-13&rft.volume=149&rft.spage=e214&rft.epage=e214&rft.pages=e214-e214&rft.artnum=e214&rft.issn=0950-2688&rft.eissn=1469-4409&rft_id=info:doi/10.1017/S0950268821002090&rft_dat=%3Cproquest_pubme%3E2578970177%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578970177&rft_id=info:pmid/34511150&rft_cupid=10_1017_S0950268821002090&rfr_iscdi=true |