A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion

A new relaxed variant of interior point method for low-rank semidefinite programming problems is proposed in this paper. The method is a step outside of the usual interior point framework. In anticipation to converging to a low-rank primal solution, a special nearly low-rank form of all primal itera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2021-11, Vol.89 (2), p.46-46, Article 46
Hauptverfasser: Bellavia, Stefania, Gondzio, Jacek, Porcelli, Margherita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue 2
container_start_page 46
container_title Journal of scientific computing
container_volume 89
creator Bellavia, Stefania
Gondzio, Jacek
Porcelli, Margherita
description A new relaxed variant of interior point method for low-rank semidefinite programming problems is proposed in this paper. The method is a step outside of the usual interior point framework. In anticipation to converging to a low-rank primal solution, a special nearly low-rank form of all primal iterates is imposed. To accommodate such a (restrictive) structure, the first order optimality conditions have to be relaxed and are therefore approximated by solving an auxiliary least-squares problem. The relaxed interior point framework opens numerous possibilities how primal and dual approximated Newton directions can be computed. In particular, it admits the application of both the first- and the second-order methods in this context. The convergence of the method is established. A prototype implementation is discussed and encouraging preliminary computational results are reported for solving the SDP-reformulation of matrix-completion problems.
doi_str_mv 10.1007/s10915-021-01654-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8504795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583321714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-ddb5349eb020448b40231bd4ccac4d6b4ed0d52e508a917841303de328120c883</originalsourceid><addsrcrecordid>eNp9kc1uEzEUhS0EoqHwAqwssWEz4OufjGeDFEX8VEpFVWBtecY3icuMHWwPLW-PQyoQLFjZuv7Oke2PkOfAXgFj7esMrAPVMA4Ng6WSDTwgC1CtaNplBw_Jgmmtmla28ow8yfmGMdbpjj8mZ0IulVasXZB5Ra9xtHfo6EUomHxM9Cr6UOglln10dFsHm3jbXNvwlX7CyTvc-uAL0qsUd8lOkw-7474fccr01pc9XR0Oox9s8TFkWiK9tCX5O7qO02HE4_QpebS1Y8Zn9-s5-fLu7ef1h2bz8f3FerVpBqmgNM71SsgOe8aZlLqXjAvonRwGO0i37CU65hRHxbTtoNUSBBMOBdfA2aC1OCdvTr2HuZ_QDRhKsqM5JD_Z9MNE683fJ8HvzS5-N_VzZNupWvDyviDFbzPmYiafBxxHGzDO2XClheDQgqzoi3_QmzinUJ9neAdagKrSKsVP1JBizgm3vy8DzBytmpNVU62aX1YN1JA4hXKFww7Tn-r_pH4CwkWkpw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918315100</pqid></control><display><type>article</type><title>A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Bellavia, Stefania ; Gondzio, Jacek ; Porcelli, Margherita</creator><creatorcontrib>Bellavia, Stefania ; Gondzio, Jacek ; Porcelli, Margherita</creatorcontrib><description>A new relaxed variant of interior point method for low-rank semidefinite programming problems is proposed in this paper. The method is a step outside of the usual interior point framework. In anticipation to converging to a low-rank primal solution, a special nearly low-rank form of all primal iterates is imposed. To accommodate such a (restrictive) structure, the first order optimality conditions have to be relaxed and are therefore approximated by solving an auxiliary least-squares problem. The relaxed interior point framework opens numerous possibilities how primal and dual approximated Newton directions can be computed. In particular, it admits the application of both the first- and the second-order methods in this context. The convergence of the method is established. A prototype implementation is discussed and encouraging preliminary computational results are reported for solving the SDP-reformulation of matrix-completion problems.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-021-01654-1</identifier><identifier>PMID: 34658507</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Convergence ; Efficiency ; Least squares method ; Linear algebra ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Matrices (mathematics) ; Methods ; Optimization ; Semidefinite programming ; Theoretical</subject><ispartof>Journal of scientific computing, 2021-11, Vol.89 (2), p.46-46, Article 46</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-ddb5349eb020448b40231bd4ccac4d6b4ed0d52e508a917841303de328120c883</citedby><cites>FETCH-LOGICAL-c451t-ddb5349eb020448b40231bd4ccac4d6b4ed0d52e508a917841303de328120c883</cites><orcidid>0000-0003-0183-1204 ; 0000-0002-3691-7836 ; 0000-0002-6270-4666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-021-01654-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918315100?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,21368,27903,27904,33723,33724,41467,42536,43784,51297</link.rule.ids></links><search><creatorcontrib>Bellavia, Stefania</creatorcontrib><creatorcontrib>Gondzio, Jacek</creatorcontrib><creatorcontrib>Porcelli, Margherita</creatorcontrib><title>A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>A new relaxed variant of interior point method for low-rank semidefinite programming problems is proposed in this paper. The method is a step outside of the usual interior point framework. In anticipation to converging to a low-rank primal solution, a special nearly low-rank form of all primal iterates is imposed. To accommodate such a (restrictive) structure, the first order optimality conditions have to be relaxed and are therefore approximated by solving an auxiliary least-squares problem. The relaxed interior point framework opens numerous possibilities how primal and dual approximated Newton directions can be computed. In particular, it admits the application of both the first- and the second-order methods in this context. The convergence of the method is established. A prototype implementation is discussed and encouraging preliminary computational results are reported for solving the SDP-reformulation of matrix-completion problems.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Efficiency</subject><subject>Least squares method</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrices (mathematics)</subject><subject>Methods</subject><subject>Optimization</subject><subject>Semidefinite programming</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1uEzEUhS0EoqHwAqwssWEz4OufjGeDFEX8VEpFVWBtecY3icuMHWwPLW-PQyoQLFjZuv7Oke2PkOfAXgFj7esMrAPVMA4Ng6WSDTwgC1CtaNplBw_Jgmmtmla28ow8yfmGMdbpjj8mZ0IulVasXZB5Ra9xtHfo6EUomHxM9Cr6UOglln10dFsHm3jbXNvwlX7CyTvc-uAL0qsUd8lOkw-7474fccr01pc9XR0Oox9s8TFkWiK9tCX5O7qO02HE4_QpebS1Y8Zn9-s5-fLu7ef1h2bz8f3FerVpBqmgNM71SsgOe8aZlLqXjAvonRwGO0i37CU65hRHxbTtoNUSBBMOBdfA2aC1OCdvTr2HuZ_QDRhKsqM5JD_Z9MNE683fJ8HvzS5-N_VzZNupWvDyviDFbzPmYiafBxxHGzDO2XClheDQgqzoi3_QmzinUJ9neAdagKrSKsVP1JBizgm3vy8DzBytmpNVU62aX1YN1JA4hXKFww7Tn-r_pH4CwkWkpw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Bellavia, Stefania</creator><creator>Gondzio, Jacek</creator><creator>Porcelli, Margherita</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0183-1204</orcidid><orcidid>https://orcid.org/0000-0002-3691-7836</orcidid><orcidid>https://orcid.org/0000-0002-6270-4666</orcidid></search><sort><creationdate>20211101</creationdate><title>A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion</title><author>Bellavia, Stefania ; Gondzio, Jacek ; Porcelli, Margherita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-ddb5349eb020448b40231bd4ccac4d6b4ed0d52e508a917841303de328120c883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Efficiency</topic><topic>Least squares method</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrices (mathematics)</topic><topic>Methods</topic><topic>Optimization</topic><topic>Semidefinite programming</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellavia, Stefania</creatorcontrib><creatorcontrib>Gondzio, Jacek</creatorcontrib><creatorcontrib>Porcelli, Margherita</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellavia, Stefania</au><au>Gondzio, Jacek</au><au>Porcelli, Margherita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>89</volume><issue>2</issue><spage>46</spage><epage>46</epage><pages>46-46</pages><artnum>46</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>A new relaxed variant of interior point method for low-rank semidefinite programming problems is proposed in this paper. The method is a step outside of the usual interior point framework. In anticipation to converging to a low-rank primal solution, a special nearly low-rank form of all primal iterates is imposed. To accommodate such a (restrictive) structure, the first order optimality conditions have to be relaxed and are therefore approximated by solving an auxiliary least-squares problem. The relaxed interior point framework opens numerous possibilities how primal and dual approximated Newton directions can be computed. In particular, it admits the application of both the first- and the second-order methods in this context. The convergence of the method is established. A prototype implementation is discussed and encouraging preliminary computational results are reported for solving the SDP-reformulation of matrix-completion problems.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34658507</pmid><doi>10.1007/s10915-021-01654-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0183-1204</orcidid><orcidid>https://orcid.org/0000-0002-3691-7836</orcidid><orcidid>https://orcid.org/0000-0002-6270-4666</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2021-11, Vol.89 (2), p.46-46, Article 46
issn 0885-7474
1573-7691
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8504795
source SpringerLink Journals; ProQuest Central
subjects Algorithms
Approximation
Computational Mathematics and Numerical Analysis
Convergence
Efficiency
Least squares method
Linear algebra
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Matrices (mathematics)
Methods
Optimization
Semidefinite programming
Theoretical
title A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Relaxed%20Interior%20Point%20Method%20for%20Low-Rank%20Semidefinite%20Programming%20Problems%20with%20Applications%20to%20Matrix%20Completion&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Bellavia,%20Stefania&rft.date=2021-11-01&rft.volume=89&rft.issue=2&rft.spage=46&rft.epage=46&rft.pages=46-46&rft.artnum=46&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-021-01654-1&rft_dat=%3Cproquest_pubme%3E2583321714%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918315100&rft_id=info:pmid/34658507&rfr_iscdi=true