A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion
A new relaxed variant of interior point method for low-rank semidefinite programming problems is proposed in this paper. The method is a step outside of the usual interior point framework. In anticipation to converging to a low-rank primal solution, a special nearly low-rank form of all primal itera...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2021-11, Vol.89 (2), p.46-46, Article 46 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | 2 |
container_start_page | 46 |
container_title | Journal of scientific computing |
container_volume | 89 |
creator | Bellavia, Stefania Gondzio, Jacek Porcelli, Margherita |
description | A new relaxed variant of interior point method for low-rank semidefinite programming problems is proposed in this paper. The method is a step outside of the usual interior point framework. In anticipation to converging to a low-rank primal solution, a special nearly low-rank form of all primal iterates is imposed. To accommodate such a (restrictive) structure, the first order optimality conditions have to be relaxed and are therefore approximated by solving an auxiliary least-squares problem. The relaxed interior point framework opens numerous possibilities how primal and dual approximated Newton directions can be computed. In particular, it admits the application of both the first- and the second-order methods in this context. The convergence of the method is established. A prototype implementation is discussed and encouraging preliminary computational results are reported for solving the SDP-reformulation of matrix-completion problems. |
doi_str_mv | 10.1007/s10915-021-01654-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8504795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583321714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-ddb5349eb020448b40231bd4ccac4d6b4ed0d52e508a917841303de328120c883</originalsourceid><addsrcrecordid>eNp9kc1uEzEUhS0EoqHwAqwssWEz4OufjGeDFEX8VEpFVWBtecY3icuMHWwPLW-PQyoQLFjZuv7Oke2PkOfAXgFj7esMrAPVMA4Ng6WSDTwgC1CtaNplBw_Jgmmtmla28ow8yfmGMdbpjj8mZ0IulVasXZB5Ra9xtHfo6EUomHxM9Cr6UOglln10dFsHm3jbXNvwlX7CyTvc-uAL0qsUd8lOkw-7474fccr01pc9XR0Oox9s8TFkWiK9tCX5O7qO02HE4_QpebS1Y8Zn9-s5-fLu7ef1h2bz8f3FerVpBqmgNM71SsgOe8aZlLqXjAvonRwGO0i37CU65hRHxbTtoNUSBBMOBdfA2aC1OCdvTr2HuZ_QDRhKsqM5JD_Z9MNE683fJ8HvzS5-N_VzZNupWvDyviDFbzPmYiafBxxHGzDO2XClheDQgqzoi3_QmzinUJ9neAdagKrSKsVP1JBizgm3vy8DzBytmpNVU62aX1YN1JA4hXKFww7Tn-r_pH4CwkWkpw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918315100</pqid></control><display><type>article</type><title>A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Bellavia, Stefania ; Gondzio, Jacek ; Porcelli, Margherita</creator><creatorcontrib>Bellavia, Stefania ; Gondzio, Jacek ; Porcelli, Margherita</creatorcontrib><description>A new relaxed variant of interior point method for low-rank semidefinite programming problems is proposed in this paper. The method is a step outside of the usual interior point framework. In anticipation to converging to a low-rank primal solution, a special nearly low-rank form of all primal iterates is imposed. To accommodate such a (restrictive) structure, the first order optimality conditions have to be relaxed and are therefore approximated by solving an auxiliary least-squares problem. The relaxed interior point framework opens numerous possibilities how primal and dual approximated Newton directions can be computed. In particular, it admits the application of both the first- and the second-order methods in this context. The convergence of the method is established. A prototype implementation is discussed and encouraging preliminary computational results are reported for solving the SDP-reformulation of matrix-completion problems.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-021-01654-1</identifier><identifier>PMID: 34658507</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Convergence ; Efficiency ; Least squares method ; Linear algebra ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Matrices (mathematics) ; Methods ; Optimization ; Semidefinite programming ; Theoretical</subject><ispartof>Journal of scientific computing, 2021-11, Vol.89 (2), p.46-46, Article 46</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-ddb5349eb020448b40231bd4ccac4d6b4ed0d52e508a917841303de328120c883</citedby><cites>FETCH-LOGICAL-c451t-ddb5349eb020448b40231bd4ccac4d6b4ed0d52e508a917841303de328120c883</cites><orcidid>0000-0003-0183-1204 ; 0000-0002-3691-7836 ; 0000-0002-6270-4666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-021-01654-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918315100?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,21368,27903,27904,33723,33724,41467,42536,43784,51297</link.rule.ids></links><search><creatorcontrib>Bellavia, Stefania</creatorcontrib><creatorcontrib>Gondzio, Jacek</creatorcontrib><creatorcontrib>Porcelli, Margherita</creatorcontrib><title>A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>A new relaxed variant of interior point method for low-rank semidefinite programming problems is proposed in this paper. The method is a step outside of the usual interior point framework. In anticipation to converging to a low-rank primal solution, a special nearly low-rank form of all primal iterates is imposed. To accommodate such a (restrictive) structure, the first order optimality conditions have to be relaxed and are therefore approximated by solving an auxiliary least-squares problem. The relaxed interior point framework opens numerous possibilities how primal and dual approximated Newton directions can be computed. In particular, it admits the application of both the first- and the second-order methods in this context. The convergence of the method is established. A prototype implementation is discussed and encouraging preliminary computational results are reported for solving the SDP-reformulation of matrix-completion problems.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Efficiency</subject><subject>Least squares method</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrices (mathematics)</subject><subject>Methods</subject><subject>Optimization</subject><subject>Semidefinite programming</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1uEzEUhS0EoqHwAqwssWEz4OufjGeDFEX8VEpFVWBtecY3icuMHWwPLW-PQyoQLFjZuv7Oke2PkOfAXgFj7esMrAPVMA4Ng6WSDTwgC1CtaNplBw_Jgmmtmla28ow8yfmGMdbpjj8mZ0IulVasXZB5Ra9xtHfo6EUomHxM9Cr6UOglln10dFsHm3jbXNvwlX7CyTvc-uAL0qsUd8lOkw-7474fccr01pc9XR0Oox9s8TFkWiK9tCX5O7qO02HE4_QpebS1Y8Zn9-s5-fLu7ef1h2bz8f3FerVpBqmgNM71SsgOe8aZlLqXjAvonRwGO0i37CU65hRHxbTtoNUSBBMOBdfA2aC1OCdvTr2HuZ_QDRhKsqM5JD_Z9MNE683fJ8HvzS5-N_VzZNupWvDyviDFbzPmYiafBxxHGzDO2XClheDQgqzoi3_QmzinUJ9neAdagKrSKsVP1JBizgm3vy8DzBytmpNVU62aX1YN1JA4hXKFww7Tn-r_pH4CwkWkpw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Bellavia, Stefania</creator><creator>Gondzio, Jacek</creator><creator>Porcelli, Margherita</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0183-1204</orcidid><orcidid>https://orcid.org/0000-0002-3691-7836</orcidid><orcidid>https://orcid.org/0000-0002-6270-4666</orcidid></search><sort><creationdate>20211101</creationdate><title>A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion</title><author>Bellavia, Stefania ; Gondzio, Jacek ; Porcelli, Margherita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-ddb5349eb020448b40231bd4ccac4d6b4ed0d52e508a917841303de328120c883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Efficiency</topic><topic>Least squares method</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrices (mathematics)</topic><topic>Methods</topic><topic>Optimization</topic><topic>Semidefinite programming</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellavia, Stefania</creatorcontrib><creatorcontrib>Gondzio, Jacek</creatorcontrib><creatorcontrib>Porcelli, Margherita</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellavia, Stefania</au><au>Gondzio, Jacek</au><au>Porcelli, Margherita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>89</volume><issue>2</issue><spage>46</spage><epage>46</epage><pages>46-46</pages><artnum>46</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>A new relaxed variant of interior point method for low-rank semidefinite programming problems is proposed in this paper. The method is a step outside of the usual interior point framework. In anticipation to converging to a low-rank primal solution, a special nearly low-rank form of all primal iterates is imposed. To accommodate such a (restrictive) structure, the first order optimality conditions have to be relaxed and are therefore approximated by solving an auxiliary least-squares problem. The relaxed interior point framework opens numerous possibilities how primal and dual approximated Newton directions can be computed. In particular, it admits the application of both the first- and the second-order methods in this context. The convergence of the method is established. A prototype implementation is discussed and encouraging preliminary computational results are reported for solving the SDP-reformulation of matrix-completion problems.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34658507</pmid><doi>10.1007/s10915-021-01654-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0183-1204</orcidid><orcidid>https://orcid.org/0000-0002-3691-7836</orcidid><orcidid>https://orcid.org/0000-0002-6270-4666</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2021-11, Vol.89 (2), p.46-46, Article 46 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8504795 |
source | SpringerLink Journals; ProQuest Central |
subjects | Algorithms Approximation Computational Mathematics and Numerical Analysis Convergence Efficiency Least squares method Linear algebra Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Matrices (mathematics) Methods Optimization Semidefinite programming Theoretical |
title | A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Relaxed%20Interior%20Point%20Method%20for%20Low-Rank%20Semidefinite%20Programming%20Problems%20with%20Applications%20to%20Matrix%20Completion&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Bellavia,%20Stefania&rft.date=2021-11-01&rft.volume=89&rft.issue=2&rft.spage=46&rft.epage=46&rft.pages=46-46&rft.artnum=46&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-021-01654-1&rft_dat=%3Cproquest_pubme%3E2583321714%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918315100&rft_id=info:pmid/34658507&rfr_iscdi=true |