Novel anti-repression mechanism of H-NS proteins by a phage protein
H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA. Und...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2021-10, Vol.49 (18), p.10770-10784 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10784 |
---|---|
container_issue | 18 |
container_start_page | 10770 |
container_title | Nucleic acids research |
container_volume | 49 |
creator | Bdira, Fredj Ben Erkelens, Amanda M Qin, Liang Volkov, Alexander N Lippa, Andrew M Bowring, Nicholas Boyle, Aimee L Ubbink, Marcellus Dove, Simon L Dame, Remus T |
description | H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA. Under specific environmental conditions they switch to bridging two DNA duplexes. This switching is a direct effect of environmental conditions on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of H-NS proteins. The Pseudomonas lytic phage LUZ24 encodes the protein gp4, which modulates the DNA binding and function of the H-NS family protein MvaT of Pseudomonas aeruginosa. However, the mechanism by which gp4 affects MvaT activity remains elusive. In this study, we show that gp4 specifically interferes with the formation and stability of the bridged MvaT-DNA complex. Structural investigations suggest that gp4 acts as an 'electrostatic zipper' between the oppositely charged domains of MvaT protomers, and stabilizes a structure resembling their 'half-open' conformation, resulting in relief of gene silencing and adverse effects on P. aeruginosa growth. The ability to control H-NS conformation and thereby its impact on global gene regulation and growth might open new avenues to fight Pseudomonas multidrug resistance. |
doi_str_mv | 10.1093/nar/gkab793 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8501957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572936669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-e4dbcf067a6e7f2d9304edda325fcfa1d19122342a8aee7fd1d150ebb7ae48293</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdRbK2evMseBYndz3xcBClqhVIP6nmZJJM2mmTjblrovzelH-hpYObhfYeHkGvO7jlL5LgBN158Qxol8oQMuQxFoJJQnJIhk0wHnKl4QC68_2KMK67VORlIpQXTWg3JZG7XWFFoujJw2Dr0vrQNrTFbQlP6mtqCToP5O22d7bBsPE03FGi7hAUedpfkrIDK49V-jsjn89PHZBrM3l5eJ4-zIJMx7wJUeZoVLIwgxKgQeSKZwjwHKXSRFcBznnAhpBIQA_ZE3m80wzSNAFUsEjkiD7vcdpXWmGfYdA4q07qyBrcxFkrz_9KUS7OwaxNrxhMd9QG3-wBnf1boO1OXPsOqggbtyhuho74mDMNt190OzZz13mFxrOHMbLWbXrvZa-_pm7-fHdmDZ_kLq8GA3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572936669</pqid></control><display><type>article</type><title>Novel anti-repression mechanism of H-NS proteins by a phage protein</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bdira, Fredj Ben ; Erkelens, Amanda M ; Qin, Liang ; Volkov, Alexander N ; Lippa, Andrew M ; Bowring, Nicholas ; Boyle, Aimee L ; Ubbink, Marcellus ; Dove, Simon L ; Dame, Remus T</creator><creatorcontrib>Bdira, Fredj Ben ; Erkelens, Amanda M ; Qin, Liang ; Volkov, Alexander N ; Lippa, Andrew M ; Bowring, Nicholas ; Boyle, Aimee L ; Ubbink, Marcellus ; Dove, Simon L ; Dame, Remus T</creatorcontrib><description>H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA. Under specific environmental conditions they switch to bridging two DNA duplexes. This switching is a direct effect of environmental conditions on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of H-NS proteins. The Pseudomonas lytic phage LUZ24 encodes the protein gp4, which modulates the DNA binding and function of the H-NS family protein MvaT of Pseudomonas aeruginosa. However, the mechanism by which gp4 affects MvaT activity remains elusive. In this study, we show that gp4 specifically interferes with the formation and stability of the bridged MvaT-DNA complex. Structural investigations suggest that gp4 acts as an 'electrostatic zipper' between the oppositely charged domains of MvaT protomers, and stabilizes a structure resembling their 'half-open' conformation, resulting in relief of gene silencing and adverse effects on P. aeruginosa growth. The ability to control H-NS conformation and thereby its impact on global gene regulation and growth might open new avenues to fight Pseudomonas multidrug resistance.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkab793</identifier><identifier>PMID: 34520554</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; DNA - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - metabolism ; Gene Expression Regulation, Bacterial ; Gene Silencing ; Models, Molecular ; Protein Binding ; Pseudomonas - genetics ; Pseudomonas - growth & development ; Pseudomonas - virology ; Pseudomonas Phages - physiology ; Structural Biology ; Trans-Activators - chemistry ; Trans-Activators - metabolism ; Viral Proteins - chemistry ; Viral Proteins - metabolism</subject><ispartof>Nucleic acids research, 2021-10, Vol.49 (18), p.10770-10784</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-e4dbcf067a6e7f2d9304edda325fcfa1d19122342a8aee7fd1d150ebb7ae48293</citedby><cites>FETCH-LOGICAL-c381t-e4dbcf067a6e7f2d9304edda325fcfa1d19122342a8aee7fd1d150ebb7ae48293</cites><orcidid>0000-0003-0205-4144 ; 0000-0002-0978-1611 ; 0000-0002-3758-608X ; 0000-0001-9369-5814 ; 0000-0001-9863-1692 ; 0000-0003-4176-6080 ; 0000-0002-2615-6914 ; 0000-0002-0103-059X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501957/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501957/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34520554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bdira, Fredj Ben</creatorcontrib><creatorcontrib>Erkelens, Amanda M</creatorcontrib><creatorcontrib>Qin, Liang</creatorcontrib><creatorcontrib>Volkov, Alexander N</creatorcontrib><creatorcontrib>Lippa, Andrew M</creatorcontrib><creatorcontrib>Bowring, Nicholas</creatorcontrib><creatorcontrib>Boyle, Aimee L</creatorcontrib><creatorcontrib>Ubbink, Marcellus</creatorcontrib><creatorcontrib>Dove, Simon L</creatorcontrib><creatorcontrib>Dame, Remus T</creatorcontrib><title>Novel anti-repression mechanism of H-NS proteins by a phage protein</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA. Under specific environmental conditions they switch to bridging two DNA duplexes. This switching is a direct effect of environmental conditions on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of H-NS proteins. The Pseudomonas lytic phage LUZ24 encodes the protein gp4, which modulates the DNA binding and function of the H-NS family protein MvaT of Pseudomonas aeruginosa. However, the mechanism by which gp4 affects MvaT activity remains elusive. In this study, we show that gp4 specifically interferes with the formation and stability of the bridged MvaT-DNA complex. Structural investigations suggest that gp4 acts as an 'electrostatic zipper' between the oppositely charged domains of MvaT protomers, and stabilizes a structure resembling their 'half-open' conformation, resulting in relief of gene silencing and adverse effects on P. aeruginosa growth. The ability to control H-NS conformation and thereby its impact on global gene regulation and growth might open new avenues to fight Pseudomonas multidrug resistance.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>DNA - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Silencing</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Pseudomonas - genetics</subject><subject>Pseudomonas - growth & development</subject><subject>Pseudomonas - virology</subject><subject>Pseudomonas Phages - physiology</subject><subject>Structural Biology</subject><subject>Trans-Activators - chemistry</subject><subject>Trans-Activators - metabolism</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1Lw0AQhhdRbK2evMseBYndz3xcBClqhVIP6nmZJJM2mmTjblrovzelH-hpYObhfYeHkGvO7jlL5LgBN158Qxol8oQMuQxFoJJQnJIhk0wHnKl4QC68_2KMK67VORlIpQXTWg3JZG7XWFFoujJw2Dr0vrQNrTFbQlP6mtqCToP5O22d7bBsPE03FGi7hAUedpfkrIDK49V-jsjn89PHZBrM3l5eJ4-zIJMx7wJUeZoVLIwgxKgQeSKZwjwHKXSRFcBznnAhpBIQA_ZE3m80wzSNAFUsEjkiD7vcdpXWmGfYdA4q07qyBrcxFkrz_9KUS7OwaxNrxhMd9QG3-wBnf1boO1OXPsOqggbtyhuho74mDMNt190OzZz13mFxrOHMbLWbXrvZa-_pm7-fHdmDZ_kLq8GA3Q</recordid><startdate>20211011</startdate><enddate>20211011</enddate><creator>Bdira, Fredj Ben</creator><creator>Erkelens, Amanda M</creator><creator>Qin, Liang</creator><creator>Volkov, Alexander N</creator><creator>Lippa, Andrew M</creator><creator>Bowring, Nicholas</creator><creator>Boyle, Aimee L</creator><creator>Ubbink, Marcellus</creator><creator>Dove, Simon L</creator><creator>Dame, Remus T</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0205-4144</orcidid><orcidid>https://orcid.org/0000-0002-0978-1611</orcidid><orcidid>https://orcid.org/0000-0002-3758-608X</orcidid><orcidid>https://orcid.org/0000-0001-9369-5814</orcidid><orcidid>https://orcid.org/0000-0001-9863-1692</orcidid><orcidid>https://orcid.org/0000-0003-4176-6080</orcidid><orcidid>https://orcid.org/0000-0002-2615-6914</orcidid><orcidid>https://orcid.org/0000-0002-0103-059X</orcidid></search><sort><creationdate>20211011</creationdate><title>Novel anti-repression mechanism of H-NS proteins by a phage protein</title><author>Bdira, Fredj Ben ; Erkelens, Amanda M ; Qin, Liang ; Volkov, Alexander N ; Lippa, Andrew M ; Bowring, Nicholas ; Boyle, Aimee L ; Ubbink, Marcellus ; Dove, Simon L ; Dame, Remus T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-e4dbcf067a6e7f2d9304edda325fcfa1d19122342a8aee7fd1d150ebb7ae48293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>DNA - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Silencing</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Pseudomonas - genetics</topic><topic>Pseudomonas - growth & development</topic><topic>Pseudomonas - virology</topic><topic>Pseudomonas Phages - physiology</topic><topic>Structural Biology</topic><topic>Trans-Activators - chemistry</topic><topic>Trans-Activators - metabolism</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bdira, Fredj Ben</creatorcontrib><creatorcontrib>Erkelens, Amanda M</creatorcontrib><creatorcontrib>Qin, Liang</creatorcontrib><creatorcontrib>Volkov, Alexander N</creatorcontrib><creatorcontrib>Lippa, Andrew M</creatorcontrib><creatorcontrib>Bowring, Nicholas</creatorcontrib><creatorcontrib>Boyle, Aimee L</creatorcontrib><creatorcontrib>Ubbink, Marcellus</creatorcontrib><creatorcontrib>Dove, Simon L</creatorcontrib><creatorcontrib>Dame, Remus T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bdira, Fredj Ben</au><au>Erkelens, Amanda M</au><au>Qin, Liang</au><au>Volkov, Alexander N</au><au>Lippa, Andrew M</au><au>Bowring, Nicholas</au><au>Boyle, Aimee L</au><au>Ubbink, Marcellus</au><au>Dove, Simon L</au><au>Dame, Remus T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel anti-repression mechanism of H-NS proteins by a phage protein</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2021-10-11</date><risdate>2021</risdate><volume>49</volume><issue>18</issue><spage>10770</spage><epage>10784</epage><pages>10770-10784</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA. Under specific environmental conditions they switch to bridging two DNA duplexes. This switching is a direct effect of environmental conditions on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of H-NS proteins. The Pseudomonas lytic phage LUZ24 encodes the protein gp4, which modulates the DNA binding and function of the H-NS family protein MvaT of Pseudomonas aeruginosa. However, the mechanism by which gp4 affects MvaT activity remains elusive. In this study, we show that gp4 specifically interferes with the formation and stability of the bridged MvaT-DNA complex. Structural investigations suggest that gp4 acts as an 'electrostatic zipper' between the oppositely charged domains of MvaT protomers, and stabilizes a structure resembling their 'half-open' conformation, resulting in relief of gene silencing and adverse effects on P. aeruginosa growth. The ability to control H-NS conformation and thereby its impact on global gene regulation and growth might open new avenues to fight Pseudomonas multidrug resistance.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34520554</pmid><doi>10.1093/nar/gkab793</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0205-4144</orcidid><orcidid>https://orcid.org/0000-0002-0978-1611</orcidid><orcidid>https://orcid.org/0000-0002-3758-608X</orcidid><orcidid>https://orcid.org/0000-0001-9369-5814</orcidid><orcidid>https://orcid.org/0000-0001-9863-1692</orcidid><orcidid>https://orcid.org/0000-0003-4176-6080</orcidid><orcidid>https://orcid.org/0000-0002-2615-6914</orcidid><orcidid>https://orcid.org/0000-0002-0103-059X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2021-10, Vol.49 (18), p.10770-10784 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8501957 |
source | Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Bacterial Proteins - chemistry Bacterial Proteins - metabolism DNA - metabolism DNA-Binding Proteins - chemistry DNA-Binding Proteins - metabolism Gene Expression Regulation, Bacterial Gene Silencing Models, Molecular Protein Binding Pseudomonas - genetics Pseudomonas - growth & development Pseudomonas - virology Pseudomonas Phages - physiology Structural Biology Trans-Activators - chemistry Trans-Activators - metabolism Viral Proteins - chemistry Viral Proteins - metabolism |
title | Novel anti-repression mechanism of H-NS proteins by a phage protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20anti-repression%20mechanism%20of%20H-NS%20proteins%20by%20a%20phage%20protein&rft.jtitle=Nucleic%20acids%20research&rft.au=Bdira,%20Fredj%20Ben&rft.date=2021-10-11&rft.volume=49&rft.issue=18&rft.spage=10770&rft.epage=10784&rft.pages=10770-10784&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkab793&rft_dat=%3Cproquest_pubme%3E2572936669%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572936669&rft_id=info:pmid/34520554&rfr_iscdi=true |