Novel anti-repression mechanism of H-NS proteins by a phage protein

H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA. Und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2021-10, Vol.49 (18), p.10770-10784
Hauptverfasser: Bdira, Fredj Ben, Erkelens, Amanda M, Qin, Liang, Volkov, Alexander N, Lippa, Andrew M, Bowring, Nicholas, Boyle, Aimee L, Ubbink, Marcellus, Dove, Simon L, Dame, Remus T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10784
container_issue 18
container_start_page 10770
container_title Nucleic acids research
container_volume 49
creator Bdira, Fredj Ben
Erkelens, Amanda M
Qin, Liang
Volkov, Alexander N
Lippa, Andrew M
Bowring, Nicholas
Boyle, Aimee L
Ubbink, Marcellus
Dove, Simon L
Dame, Remus T
description H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA. Under specific environmental conditions they switch to bridging two DNA duplexes. This switching is a direct effect of environmental conditions on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of H-NS proteins. The Pseudomonas lytic phage LUZ24 encodes the protein gp4, which modulates the DNA binding and function of the H-NS family protein MvaT of Pseudomonas aeruginosa. However, the mechanism by which gp4 affects MvaT activity remains elusive. In this study, we show that gp4 specifically interferes with the formation and stability of the bridged MvaT-DNA complex. Structural investigations suggest that gp4 acts as an 'electrostatic zipper' between the oppositely charged domains of MvaT protomers, and stabilizes a structure resembling their 'half-open' conformation, resulting in relief of gene silencing and adverse effects on P. aeruginosa growth. The ability to control H-NS conformation and thereby its impact on global gene regulation and growth might open new avenues to fight Pseudomonas multidrug resistance.
doi_str_mv 10.1093/nar/gkab793
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8501957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572936669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-e4dbcf067a6e7f2d9304edda325fcfa1d19122342a8aee7fd1d150ebb7ae48293</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdRbK2evMseBYndz3xcBClqhVIP6nmZJJM2mmTjblrovzelH-hpYObhfYeHkGvO7jlL5LgBN158Qxol8oQMuQxFoJJQnJIhk0wHnKl4QC68_2KMK67VORlIpQXTWg3JZG7XWFFoujJw2Dr0vrQNrTFbQlP6mtqCToP5O22d7bBsPE03FGi7hAUedpfkrIDK49V-jsjn89PHZBrM3l5eJ4-zIJMx7wJUeZoVLIwgxKgQeSKZwjwHKXSRFcBznnAhpBIQA_ZE3m80wzSNAFUsEjkiD7vcdpXWmGfYdA4q07qyBrcxFkrz_9KUS7OwaxNrxhMd9QG3-wBnf1boO1OXPsOqggbtyhuho74mDMNt190OzZz13mFxrOHMbLWbXrvZa-_pm7-fHdmDZ_kLq8GA3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572936669</pqid></control><display><type>article</type><title>Novel anti-repression mechanism of H-NS proteins by a phage protein</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bdira, Fredj Ben ; Erkelens, Amanda M ; Qin, Liang ; Volkov, Alexander N ; Lippa, Andrew M ; Bowring, Nicholas ; Boyle, Aimee L ; Ubbink, Marcellus ; Dove, Simon L ; Dame, Remus T</creator><creatorcontrib>Bdira, Fredj Ben ; Erkelens, Amanda M ; Qin, Liang ; Volkov, Alexander N ; Lippa, Andrew M ; Bowring, Nicholas ; Boyle, Aimee L ; Ubbink, Marcellus ; Dove, Simon L ; Dame, Remus T</creatorcontrib><description>H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA. Under specific environmental conditions they switch to bridging two DNA duplexes. This switching is a direct effect of environmental conditions on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of H-NS proteins. The Pseudomonas lytic phage LUZ24 encodes the protein gp4, which modulates the DNA binding and function of the H-NS family protein MvaT of Pseudomonas aeruginosa. However, the mechanism by which gp4 affects MvaT activity remains elusive. In this study, we show that gp4 specifically interferes with the formation and stability of the bridged MvaT-DNA complex. Structural investigations suggest that gp4 acts as an 'electrostatic zipper' between the oppositely charged domains of MvaT protomers, and stabilizes a structure resembling their 'half-open' conformation, resulting in relief of gene silencing and adverse effects on P. aeruginosa growth. The ability to control H-NS conformation and thereby its impact on global gene regulation and growth might open new avenues to fight Pseudomonas multidrug resistance.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkab793</identifier><identifier>PMID: 34520554</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; DNA - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - metabolism ; Gene Expression Regulation, Bacterial ; Gene Silencing ; Models, Molecular ; Protein Binding ; Pseudomonas - genetics ; Pseudomonas - growth &amp; development ; Pseudomonas - virology ; Pseudomonas Phages - physiology ; Structural Biology ; Trans-Activators - chemistry ; Trans-Activators - metabolism ; Viral Proteins - chemistry ; Viral Proteins - metabolism</subject><ispartof>Nucleic acids research, 2021-10, Vol.49 (18), p.10770-10784</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-e4dbcf067a6e7f2d9304edda325fcfa1d19122342a8aee7fd1d150ebb7ae48293</citedby><cites>FETCH-LOGICAL-c381t-e4dbcf067a6e7f2d9304edda325fcfa1d19122342a8aee7fd1d150ebb7ae48293</cites><orcidid>0000-0003-0205-4144 ; 0000-0002-0978-1611 ; 0000-0002-3758-608X ; 0000-0001-9369-5814 ; 0000-0001-9863-1692 ; 0000-0003-4176-6080 ; 0000-0002-2615-6914 ; 0000-0002-0103-059X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501957/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501957/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34520554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bdira, Fredj Ben</creatorcontrib><creatorcontrib>Erkelens, Amanda M</creatorcontrib><creatorcontrib>Qin, Liang</creatorcontrib><creatorcontrib>Volkov, Alexander N</creatorcontrib><creatorcontrib>Lippa, Andrew M</creatorcontrib><creatorcontrib>Bowring, Nicholas</creatorcontrib><creatorcontrib>Boyle, Aimee L</creatorcontrib><creatorcontrib>Ubbink, Marcellus</creatorcontrib><creatorcontrib>Dove, Simon L</creatorcontrib><creatorcontrib>Dame, Remus T</creatorcontrib><title>Novel anti-repression mechanism of H-NS proteins by a phage protein</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA. Under specific environmental conditions they switch to bridging two DNA duplexes. This switching is a direct effect of environmental conditions on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of H-NS proteins. The Pseudomonas lytic phage LUZ24 encodes the protein gp4, which modulates the DNA binding and function of the H-NS family protein MvaT of Pseudomonas aeruginosa. However, the mechanism by which gp4 affects MvaT activity remains elusive. In this study, we show that gp4 specifically interferes with the formation and stability of the bridged MvaT-DNA complex. Structural investigations suggest that gp4 acts as an 'electrostatic zipper' between the oppositely charged domains of MvaT protomers, and stabilizes a structure resembling their 'half-open' conformation, resulting in relief of gene silencing and adverse effects on P. aeruginosa growth. The ability to control H-NS conformation and thereby its impact on global gene regulation and growth might open new avenues to fight Pseudomonas multidrug resistance.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>DNA - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Silencing</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Pseudomonas - genetics</subject><subject>Pseudomonas - growth &amp; development</subject><subject>Pseudomonas - virology</subject><subject>Pseudomonas Phages - physiology</subject><subject>Structural Biology</subject><subject>Trans-Activators - chemistry</subject><subject>Trans-Activators - metabolism</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1Lw0AQhhdRbK2evMseBYndz3xcBClqhVIP6nmZJJM2mmTjblrovzelH-hpYObhfYeHkGvO7jlL5LgBN158Qxol8oQMuQxFoJJQnJIhk0wHnKl4QC68_2KMK67VORlIpQXTWg3JZG7XWFFoujJw2Dr0vrQNrTFbQlP6mtqCToP5O22d7bBsPE03FGi7hAUedpfkrIDK49V-jsjn89PHZBrM3l5eJ4-zIJMx7wJUeZoVLIwgxKgQeSKZwjwHKXSRFcBznnAhpBIQA_ZE3m80wzSNAFUsEjkiD7vcdpXWmGfYdA4q07qyBrcxFkrz_9KUS7OwaxNrxhMd9QG3-wBnf1boO1OXPsOqggbtyhuho74mDMNt190OzZz13mFxrOHMbLWbXrvZa-_pm7-fHdmDZ_kLq8GA3Q</recordid><startdate>20211011</startdate><enddate>20211011</enddate><creator>Bdira, Fredj Ben</creator><creator>Erkelens, Amanda M</creator><creator>Qin, Liang</creator><creator>Volkov, Alexander N</creator><creator>Lippa, Andrew M</creator><creator>Bowring, Nicholas</creator><creator>Boyle, Aimee L</creator><creator>Ubbink, Marcellus</creator><creator>Dove, Simon L</creator><creator>Dame, Remus T</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0205-4144</orcidid><orcidid>https://orcid.org/0000-0002-0978-1611</orcidid><orcidid>https://orcid.org/0000-0002-3758-608X</orcidid><orcidid>https://orcid.org/0000-0001-9369-5814</orcidid><orcidid>https://orcid.org/0000-0001-9863-1692</orcidid><orcidid>https://orcid.org/0000-0003-4176-6080</orcidid><orcidid>https://orcid.org/0000-0002-2615-6914</orcidid><orcidid>https://orcid.org/0000-0002-0103-059X</orcidid></search><sort><creationdate>20211011</creationdate><title>Novel anti-repression mechanism of H-NS proteins by a phage protein</title><author>Bdira, Fredj Ben ; Erkelens, Amanda M ; Qin, Liang ; Volkov, Alexander N ; Lippa, Andrew M ; Bowring, Nicholas ; Boyle, Aimee L ; Ubbink, Marcellus ; Dove, Simon L ; Dame, Remus T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-e4dbcf067a6e7f2d9304edda325fcfa1d19122342a8aee7fd1d150ebb7ae48293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>DNA - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Silencing</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Pseudomonas - genetics</topic><topic>Pseudomonas - growth &amp; development</topic><topic>Pseudomonas - virology</topic><topic>Pseudomonas Phages - physiology</topic><topic>Structural Biology</topic><topic>Trans-Activators - chemistry</topic><topic>Trans-Activators - metabolism</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bdira, Fredj Ben</creatorcontrib><creatorcontrib>Erkelens, Amanda M</creatorcontrib><creatorcontrib>Qin, Liang</creatorcontrib><creatorcontrib>Volkov, Alexander N</creatorcontrib><creatorcontrib>Lippa, Andrew M</creatorcontrib><creatorcontrib>Bowring, Nicholas</creatorcontrib><creatorcontrib>Boyle, Aimee L</creatorcontrib><creatorcontrib>Ubbink, Marcellus</creatorcontrib><creatorcontrib>Dove, Simon L</creatorcontrib><creatorcontrib>Dame, Remus T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bdira, Fredj Ben</au><au>Erkelens, Amanda M</au><au>Qin, Liang</au><au>Volkov, Alexander N</au><au>Lippa, Andrew M</au><au>Bowring, Nicholas</au><au>Boyle, Aimee L</au><au>Ubbink, Marcellus</au><au>Dove, Simon L</au><au>Dame, Remus T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel anti-repression mechanism of H-NS proteins by a phage protein</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2021-10-11</date><risdate>2021</risdate><volume>49</volume><issue>18</issue><spage>10770</spage><epage>10784</epage><pages>10770-10784</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA. Under specific environmental conditions they switch to bridging two DNA duplexes. This switching is a direct effect of environmental conditions on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of H-NS proteins. The Pseudomonas lytic phage LUZ24 encodes the protein gp4, which modulates the DNA binding and function of the H-NS family protein MvaT of Pseudomonas aeruginosa. However, the mechanism by which gp4 affects MvaT activity remains elusive. In this study, we show that gp4 specifically interferes with the formation and stability of the bridged MvaT-DNA complex. Structural investigations suggest that gp4 acts as an 'electrostatic zipper' between the oppositely charged domains of MvaT protomers, and stabilizes a structure resembling their 'half-open' conformation, resulting in relief of gene silencing and adverse effects on P. aeruginosa growth. The ability to control H-NS conformation and thereby its impact on global gene regulation and growth might open new avenues to fight Pseudomonas multidrug resistance.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34520554</pmid><doi>10.1093/nar/gkab793</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0205-4144</orcidid><orcidid>https://orcid.org/0000-0002-0978-1611</orcidid><orcidid>https://orcid.org/0000-0002-3758-608X</orcidid><orcidid>https://orcid.org/0000-0001-9369-5814</orcidid><orcidid>https://orcid.org/0000-0001-9863-1692</orcidid><orcidid>https://orcid.org/0000-0003-4176-6080</orcidid><orcidid>https://orcid.org/0000-0002-2615-6914</orcidid><orcidid>https://orcid.org/0000-0002-0103-059X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2021-10, Vol.49 (18), p.10770-10784
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8501957
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
DNA - metabolism
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - metabolism
Gene Expression Regulation, Bacterial
Gene Silencing
Models, Molecular
Protein Binding
Pseudomonas - genetics
Pseudomonas - growth & development
Pseudomonas - virology
Pseudomonas Phages - physiology
Structural Biology
Trans-Activators - chemistry
Trans-Activators - metabolism
Viral Proteins - chemistry
Viral Proteins - metabolism
title Novel anti-repression mechanism of H-NS proteins by a phage protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20anti-repression%20mechanism%20of%20H-NS%20proteins%20by%20a%20phage%20protein&rft.jtitle=Nucleic%20acids%20research&rft.au=Bdira,%20Fredj%20Ben&rft.date=2021-10-11&rft.volume=49&rft.issue=18&rft.spage=10770&rft.epage=10784&rft.pages=10770-10784&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkab793&rft_dat=%3Cproquest_pubme%3E2572936669%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572936669&rft_id=info:pmid/34520554&rfr_iscdi=true