Classification Criteria for Intermediate Uveitis, Non–Pars Planitis Type

To determine classification criteria for intermediate uveitis, non–pars planitis type (IU-NPP, also known as undifferentiated intermediate uveitis). Machine learning of cases with IU-NPP and 4 other intermediate uveitides. Cases of intermediate uveitides were collected in an informatics-designed pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of ophthalmology 2021-08, Vol.228, p.159-164
Hauptverfasser: Jabs, Douglas A, Denniston, Alastair K, Dick, Andrew D, Dunn, James P, Kramer, Michal, Oden, Neal, Okada, Annabelle A, Palestine, Alan G, Read, Russell W, Thorne, Jennifer E, Trusko, Brett E, Yeh, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue
container_start_page 159
container_title American journal of ophthalmology
container_volume 228
creator Jabs, Douglas A
Denniston, Alastair K
Dick, Andrew D
Dunn, James P
Kramer, Michal
Oden, Neal
Okada, Annabelle A
Palestine, Alan G
Read, Russell W
Thorne, Jennifer E
Trusko, Brett E
Yeh, Steven
description To determine classification criteria for intermediate uveitis, non–pars planitis type (IU-NPP, also known as undifferentiated intermediate uveitis). Machine learning of cases with IU-NPP and 4 other intermediate uveitides. Cases of intermediate uveitides were collected in an informatics-designed preliminary database, and a final database was constructed of cases achieving supermajority agreement on the diagnosis, using formal consensus techniques. Cases were split into a training set and a validation set. Machine learning using multinomial logistic regression was used on the training set to determine a parsimonious set of criteria that minimized the misclassification rate among the intermediate uveitides. The resulting criteria were evaluated on the validation set. Five hundred eighty-nine of cases of intermediate uveitides, including 114 cases of IU-NPP, were evaluated by machine learning. The overall accuracy for intermediate uveitides was 99.8% in the training set and 99.3% in the validation set (95% confidence interval 96.1, 99.9). Key criteria for IU-NPP included unilateral or bilateral intermediate uveitis with neither snowballs in the vitreous humor nor snowbanks on the pars plana. Other key exclusions included multiple sclerosis, sarcoidosis, and syphilis. The misclassification rates for IU-NPP were 0% in the training set and 0% in the validation set. The criteria for IU-NPP had a low misclassification rate and seemed to perform well enough for use in clinical and translational research.
doi_str_mv 10.1016/j.ajo.2021.03.054
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8501159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002939421001793</els_id><sourcerecordid>2583918549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-ebb90db00d7d511deb37614be2f7dddd18892308342120b80ba466e303dc47843</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhAdhUkdh0QdJ7YyexValSNeKnqCpdtGvLcW7AUSYe7MxI3fEOvCFPgkdTqtIF3vjv3KNz78fYW4QCAeuToTCDL0oosQBeQCWesQXKRuUoFT5nCwAoc8WVOGCvYhzStW5E85IdcC65AqkW7MtyNDG63lkzOz9ly-BmCs5kvQ_ZxZTOK-qcmSm73ZKbXXyfXfnp989f1ybE7Ho00-4xu7lb02v2ojdjpDf3-yG7_fjhZvk5v_z66WJ5fpnbSlRzTm2roGsBuqarEDtqeVOjaKnsmy4tlFKVHCQXJZbQSmiNqGviwDsrGin4ITvb-643bQpnaZqDGfU6uJUJd9obp__9mdx3_c1vtawAsVLJ4PjeIPgfG4qzXrloaUzNkN9EXaZYUtVc1En67ol08JswpfaSKs0QZSV2hrhX2eBjDNQ_hEHQO1J60ImU3pHSwHUilWqOHnfxUPEXTRKc7gWUZrl1FHS0jiabcASys-68-4_9H8xOpMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583918549</pqid></control><display><type>article</type><title>Classification Criteria for Intermediate Uveitis, Non–Pars Planitis Type</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jabs, Douglas A ; Denniston, Alastair K ; Dick, Andrew D ; Dunn, James P ; Kramer, Michal ; Oden, Neal ; Okada, Annabelle A ; Palestine, Alan G ; Read, Russell W ; Thorne, Jennifer E ; Trusko, Brett E ; Yeh, Steven</creator><creatorcontrib>Jabs, Douglas A ; Denniston, Alastair K ; Dick, Andrew D ; Dunn, James P ; Kramer, Michal ; Oden, Neal ; Okada, Annabelle A ; Palestine, Alan G ; Read, Russell W ; Thorne, Jennifer E ; Trusko, Brett E ; Yeh, Steven ; The Standardization of Uveitis Nomenclature (SUN) Working Group</creatorcontrib><description>To determine classification criteria for intermediate uveitis, non–pars planitis type (IU-NPP, also known as undifferentiated intermediate uveitis). Machine learning of cases with IU-NPP and 4 other intermediate uveitides. Cases of intermediate uveitides were collected in an informatics-designed preliminary database, and a final database was constructed of cases achieving supermajority agreement on the diagnosis, using formal consensus techniques. Cases were split into a training set and a validation set. Machine learning using multinomial logistic regression was used on the training set to determine a parsimonious set of criteria that minimized the misclassification rate among the intermediate uveitides. The resulting criteria were evaluated on the validation set. Five hundred eighty-nine of cases of intermediate uveitides, including 114 cases of IU-NPP, were evaluated by machine learning. The overall accuracy for intermediate uveitides was 99.8% in the training set and 99.3% in the validation set (95% confidence interval 96.1, 99.9). Key criteria for IU-NPP included unilateral or bilateral intermediate uveitis with neither snowballs in the vitreous humor nor snowbanks on the pars plana. Other key exclusions included multiple sclerosis, sarcoidosis, and syphilis. The misclassification rates for IU-NPP were 0% in the training set and 0% in the validation set. The criteria for IU-NPP had a low misclassification rate and seemed to perform well enough for use in clinical and translational research.</description><identifier>ISSN: 0002-9394</identifier><identifier>EISSN: 1879-1891</identifier><identifier>DOI: 10.1016/j.ajo.2021.03.054</identifier><identifier>PMID: 33839089</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Classification ; Informatics ; Lyme disease ; Lymphoma ; Machine learning ; Medical imaging ; Multiple sclerosis ; Sarcoidosis ; Syphilis ; Systemic diseases ; Working groups</subject><ispartof>American journal of ophthalmology, 2021-08, Vol.228, p.159-164</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021. Published by Elsevier Inc.</rights><rights>2021. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-ebb90db00d7d511deb37614be2f7dddd18892308342120b80ba466e303dc47843</citedby><cites>FETCH-LOGICAL-c545t-ebb90db00d7d511deb37614be2f7dddd18892308342120b80ba466e303dc47843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ajo.2021.03.054$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33839089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jabs, Douglas A</creatorcontrib><creatorcontrib>Denniston, Alastair K</creatorcontrib><creatorcontrib>Dick, Andrew D</creatorcontrib><creatorcontrib>Dunn, James P</creatorcontrib><creatorcontrib>Kramer, Michal</creatorcontrib><creatorcontrib>Oden, Neal</creatorcontrib><creatorcontrib>Okada, Annabelle A</creatorcontrib><creatorcontrib>Palestine, Alan G</creatorcontrib><creatorcontrib>Read, Russell W</creatorcontrib><creatorcontrib>Thorne, Jennifer E</creatorcontrib><creatorcontrib>Trusko, Brett E</creatorcontrib><creatorcontrib>Yeh, Steven</creatorcontrib><creatorcontrib>The Standardization of Uveitis Nomenclature (SUN) Working Group</creatorcontrib><title>Classification Criteria for Intermediate Uveitis, Non–Pars Planitis Type</title><title>American journal of ophthalmology</title><addtitle>Am J Ophthalmol</addtitle><description>To determine classification criteria for intermediate uveitis, non–pars planitis type (IU-NPP, also known as undifferentiated intermediate uveitis). Machine learning of cases with IU-NPP and 4 other intermediate uveitides. Cases of intermediate uveitides were collected in an informatics-designed preliminary database, and a final database was constructed of cases achieving supermajority agreement on the diagnosis, using formal consensus techniques. Cases were split into a training set and a validation set. Machine learning using multinomial logistic regression was used on the training set to determine a parsimonious set of criteria that minimized the misclassification rate among the intermediate uveitides. The resulting criteria were evaluated on the validation set. Five hundred eighty-nine of cases of intermediate uveitides, including 114 cases of IU-NPP, were evaluated by machine learning. The overall accuracy for intermediate uveitides was 99.8% in the training set and 99.3% in the validation set (95% confidence interval 96.1, 99.9). Key criteria for IU-NPP included unilateral or bilateral intermediate uveitis with neither snowballs in the vitreous humor nor snowbanks on the pars plana. Other key exclusions included multiple sclerosis, sarcoidosis, and syphilis. The misclassification rates for IU-NPP were 0% in the training set and 0% in the validation set. The criteria for IU-NPP had a low misclassification rate and seemed to perform well enough for use in clinical and translational research.</description><subject>Classification</subject><subject>Informatics</subject><subject>Lyme disease</subject><subject>Lymphoma</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Multiple sclerosis</subject><subject>Sarcoidosis</subject><subject>Syphilis</subject><subject>Systemic diseases</subject><subject>Working groups</subject><issn>0002-9394</issn><issn>1879-1891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS0EokPhAdhUkdh0QdJ7YyexValSNeKnqCpdtGvLcW7AUSYe7MxI3fEOvCFPgkdTqtIF3vjv3KNz78fYW4QCAeuToTCDL0oosQBeQCWesQXKRuUoFT5nCwAoc8WVOGCvYhzStW5E85IdcC65AqkW7MtyNDG63lkzOz9ly-BmCs5kvQ_ZxZTOK-qcmSm73ZKbXXyfXfnp989f1ybE7Ho00-4xu7lb02v2ojdjpDf3-yG7_fjhZvk5v_z66WJ5fpnbSlRzTm2roGsBuqarEDtqeVOjaKnsmy4tlFKVHCQXJZbQSmiNqGviwDsrGin4ITvb-643bQpnaZqDGfU6uJUJd9obp__9mdx3_c1vtawAsVLJ4PjeIPgfG4qzXrloaUzNkN9EXaZYUtVc1En67ol08JswpfaSKs0QZSV2hrhX2eBjDNQ_hEHQO1J60ImU3pHSwHUilWqOHnfxUPEXTRKc7gWUZrl1FHS0jiabcASys-68-4_9H8xOpMw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Jabs, Douglas A</creator><creator>Denniston, Alastair K</creator><creator>Dick, Andrew D</creator><creator>Dunn, James P</creator><creator>Kramer, Michal</creator><creator>Oden, Neal</creator><creator>Okada, Annabelle A</creator><creator>Palestine, Alan G</creator><creator>Read, Russell W</creator><creator>Thorne, Jennifer E</creator><creator>Trusko, Brett E</creator><creator>Yeh, Steven</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210801</creationdate><title>Classification Criteria for Intermediate Uveitis, Non–Pars Planitis Type</title><author>Jabs, Douglas A ; Denniston, Alastair K ; Dick, Andrew D ; Dunn, James P ; Kramer, Michal ; Oden, Neal ; Okada, Annabelle A ; Palestine, Alan G ; Read, Russell W ; Thorne, Jennifer E ; Trusko, Brett E ; Yeh, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-ebb90db00d7d511deb37614be2f7dddd18892308342120b80ba466e303dc47843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Informatics</topic><topic>Lyme disease</topic><topic>Lymphoma</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Multiple sclerosis</topic><topic>Sarcoidosis</topic><topic>Syphilis</topic><topic>Systemic diseases</topic><topic>Working groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jabs, Douglas A</creatorcontrib><creatorcontrib>Denniston, Alastair K</creatorcontrib><creatorcontrib>Dick, Andrew D</creatorcontrib><creatorcontrib>Dunn, James P</creatorcontrib><creatorcontrib>Kramer, Michal</creatorcontrib><creatorcontrib>Oden, Neal</creatorcontrib><creatorcontrib>Okada, Annabelle A</creatorcontrib><creatorcontrib>Palestine, Alan G</creatorcontrib><creatorcontrib>Read, Russell W</creatorcontrib><creatorcontrib>Thorne, Jennifer E</creatorcontrib><creatorcontrib>Trusko, Brett E</creatorcontrib><creatorcontrib>Yeh, Steven</creatorcontrib><creatorcontrib>The Standardization of Uveitis Nomenclature (SUN) Working Group</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of ophthalmology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabs, Douglas A</au><au>Denniston, Alastair K</au><au>Dick, Andrew D</au><au>Dunn, James P</au><au>Kramer, Michal</au><au>Oden, Neal</au><au>Okada, Annabelle A</au><au>Palestine, Alan G</au><au>Read, Russell W</au><au>Thorne, Jennifer E</au><au>Trusko, Brett E</au><au>Yeh, Steven</au><aucorp>The Standardization of Uveitis Nomenclature (SUN) Working Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification Criteria for Intermediate Uveitis, Non–Pars Planitis Type</atitle><jtitle>American journal of ophthalmology</jtitle><addtitle>Am J Ophthalmol</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>228</volume><spage>159</spage><epage>164</epage><pages>159-164</pages><issn>0002-9394</issn><eissn>1879-1891</eissn><abstract>To determine classification criteria for intermediate uveitis, non–pars planitis type (IU-NPP, also known as undifferentiated intermediate uveitis). Machine learning of cases with IU-NPP and 4 other intermediate uveitides. Cases of intermediate uveitides were collected in an informatics-designed preliminary database, and a final database was constructed of cases achieving supermajority agreement on the diagnosis, using formal consensus techniques. Cases were split into a training set and a validation set. Machine learning using multinomial logistic regression was used on the training set to determine a parsimonious set of criteria that minimized the misclassification rate among the intermediate uveitides. The resulting criteria were evaluated on the validation set. Five hundred eighty-nine of cases of intermediate uveitides, including 114 cases of IU-NPP, were evaluated by machine learning. The overall accuracy for intermediate uveitides was 99.8% in the training set and 99.3% in the validation set (95% confidence interval 96.1, 99.9). Key criteria for IU-NPP included unilateral or bilateral intermediate uveitis with neither snowballs in the vitreous humor nor snowbanks on the pars plana. Other key exclusions included multiple sclerosis, sarcoidosis, and syphilis. The misclassification rates for IU-NPP were 0% in the training set and 0% in the validation set. The criteria for IU-NPP had a low misclassification rate and seemed to perform well enough for use in clinical and translational research.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33839089</pmid><doi>10.1016/j.ajo.2021.03.054</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9394
ispartof American journal of ophthalmology, 2021-08, Vol.228, p.159-164
issn 0002-9394
1879-1891
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8501159
source Access via ScienceDirect (Elsevier)
subjects Classification
Informatics
Lyme disease
Lymphoma
Machine learning
Medical imaging
Multiple sclerosis
Sarcoidosis
Syphilis
Systemic diseases
Working groups
title Classification Criteria for Intermediate Uveitis, Non–Pars Planitis Type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20Criteria%20for%20Intermediate%20Uveitis,%20Non%E2%80%93Pars%20Planitis%20Type&rft.jtitle=American%20journal%20of%20ophthalmology&rft.au=Jabs,%20Douglas%20A&rft.aucorp=The%20Standardization%20of%20Uveitis%20Nomenclature%20(SUN)%20Working%20Group&rft.date=2021-08-01&rft.volume=228&rft.spage=159&rft.epage=164&rft.pages=159-164&rft.issn=0002-9394&rft.eissn=1879-1891&rft_id=info:doi/10.1016/j.ajo.2021.03.054&rft_dat=%3Cproquest_pubme%3E2583918549%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583918549&rft_id=info:pmid/33839089&rft_els_id=S0002939421001793&rfr_iscdi=true