Discordance in the diagnostic assessment of vulnerable plaques between radiofrequency intravascular ultrasound versus optical coherence tomography among patients with acute myocardial infarction: insights from the IBIS-4 study

We aimed to evaluate the diagnostic agreement between radiofrequency (RF) intravascular ultrasound (IVUS) and optical coherence tomography (OCT) for thin-cap fibroatheroma (TCFA) in non-infarct-related coronary arteries (non-IRA) in patients with ST-segment elevation myocardial infarction (STEMI). I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International Journal of Cardiovascular Imaging 2021-10, Vol.37 (10), p.2839-2847
Hauptverfasser: Ueki, Yasushi, Yamaji, Kyohei, Losdat, Sylvain, Karagiannis, Alexios, Taniwaki, Masanori, Roffi, Marco, Otsuka, Tatsuhiko, Koskinas, Konstantinos C., Holmvang, Lene, Maldonado, Rafaela, Pedrazzini, Giovanni, Radu, Maria D., Dijkstra, Jouke, Windecker, Stephan, Garcia-Garcia, Hector M., Räber, Lorenz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2847
container_issue 10
container_start_page 2839
container_title The International Journal of Cardiovascular Imaging
container_volume 37
creator Ueki, Yasushi
Yamaji, Kyohei
Losdat, Sylvain
Karagiannis, Alexios
Taniwaki, Masanori
Roffi, Marco
Otsuka, Tatsuhiko
Koskinas, Konstantinos C.
Holmvang, Lene
Maldonado, Rafaela
Pedrazzini, Giovanni
Radu, Maria D.
Dijkstra, Jouke
Windecker, Stephan
Garcia-Garcia, Hector M.
Räber, Lorenz
description We aimed to evaluate the diagnostic agreement between radiofrequency (RF) intravascular ultrasound (IVUS) and optical coherence tomography (OCT) for thin-cap fibroatheroma (TCFA) in non-infarct-related coronary arteries (non-IRA) in patients with ST-segment elevation myocardial infarction (STEMI). In the Integrated Biomarker Imaging Study (IBIS-4), 103 STEMI patients underwent OCT and RF-IVUS imaging of non-IRA after successful primary percutaneous coronary intervention and at 13-month follow-up. A coronary lesion was defined as a segment with ≥ 3 consecutive frames (≈1.2 mm) with plaque burden ≥ 40% as assessed by grayscale IVUS. RF-IVUS-derived TCFA was defined as a lesion with > 10% confluent necrotic core abutting to the lumen in > 10% of the circumference. OCT-TCFA was defined by a minimum cap thickness 
doi_str_mv 10.1007/s10554-021-02272-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8494667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549689856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-9a3f61afe0d1dfaf26a6345097282ceb1601a34529f9220695904e41b25f739c3</originalsourceid><addsrcrecordid>eNp9Ustu1DAUjRCIlsIPsECW2LAJOI7jjFkglfIaqRILYG3dca4TV4kdbGeq-V2-BKdTymPBwrJ977nnvk5RPK3oy4rS9lWsaNPwkrIqH9ayUtwrTqumrUva8vr--haybFrJT4pHMV5RShll9cPipOasFk1LT4sf72zUPnTgNBLrSBqQdBZ652OymkCMGOOELhFvyH4ZHQbYjUjmEb4vGMkO0zWiIwE6603AbHT6kJlSgD1EvYwQyDLmX_SL68geQ1wi8XNmh5FoP2DANXfyk-8DzMOBwORdT2ZINueN5NqmgYBeEpLp4DWEXN-YMxgIOlnvXud3tP2QoSb46aaF7dvtl5KTmJbu8Lh4YGCM-OT2Piu-fXj_9eJTefn54_bi_LLUvOWplFAbUYFB2lWdAcMEiJo3VLZswzTuKkEryAYmjWSMCtlIypFXO9aYtpa6PiveHHnnZTdhp3GdwajmYCcIB-XBqr89zg6q93u14ZIL0WaCF7cEwa_DTWrKy8FxBId-iYo1XIqN3DQiQ5__A73yS3C5vYzKC28p36wodkTp4GMMaO6KqahaJaSOElJZQupGQmoNevZnG3chvzSTAfURELPL9Rh-5_4P7U9hc9mV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579470486</pqid></control><display><type>article</type><title>Discordance in the diagnostic assessment of vulnerable plaques between radiofrequency intravascular ultrasound versus optical coherence tomography among patients with acute myocardial infarction: insights from the IBIS-4 study</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ueki, Yasushi ; Yamaji, Kyohei ; Losdat, Sylvain ; Karagiannis, Alexios ; Taniwaki, Masanori ; Roffi, Marco ; Otsuka, Tatsuhiko ; Koskinas, Konstantinos C. ; Holmvang, Lene ; Maldonado, Rafaela ; Pedrazzini, Giovanni ; Radu, Maria D. ; Dijkstra, Jouke ; Windecker, Stephan ; Garcia-Garcia, Hector M. ; Räber, Lorenz</creator><creatorcontrib>Ueki, Yasushi ; Yamaji, Kyohei ; Losdat, Sylvain ; Karagiannis, Alexios ; Taniwaki, Masanori ; Roffi, Marco ; Otsuka, Tatsuhiko ; Koskinas, Konstantinos C. ; Holmvang, Lene ; Maldonado, Rafaela ; Pedrazzini, Giovanni ; Radu, Maria D. ; Dijkstra, Jouke ; Windecker, Stephan ; Garcia-Garcia, Hector M. ; Räber, Lorenz</creatorcontrib><description>We aimed to evaluate the diagnostic agreement between radiofrequency (RF) intravascular ultrasound (IVUS) and optical coherence tomography (OCT) for thin-cap fibroatheroma (TCFA) in non-infarct-related coronary arteries (non-IRA) in patients with ST-segment elevation myocardial infarction (STEMI). In the Integrated Biomarker Imaging Study (IBIS-4), 103 STEMI patients underwent OCT and RF-IVUS imaging of non-IRA after successful primary percutaneous coronary intervention and at 13-month follow-up. A coronary lesion was defined as a segment with ≥ 3 consecutive frames (≈1.2 mm) with plaque burden ≥ 40% as assessed by grayscale IVUS. RF-IVUS-derived TCFA was defined as a lesion with &gt; 10% confluent necrotic core abutting to the lumen in &gt; 10% of the circumference. OCT-TCFA was defined by a minimum cap thickness &lt; 65 μm. The two modalities were matched based on anatomical landmarks using a dedicated matching software. Using grayscale IVUS, we identified 276 lesions at baseline (N = 146) and follow-up (N = 130). Using RF-IVUS, 208 lesions (75.4%) were classified as TCFA. Among them, OCT identified 14 (6.7%) TCFA, 60 (28.8%) thick-cap fibroatheroma (ThCFA), and 134 (64.4%) non-fibroatheroma. All OCT-TCFA (n = 14) were confirmed as RF-TCFA. The concordance rate between RF-IVUS and OCT for TCFA diagnosis was 29.7%. The reasons for discordance were: OCT-ThCFA (25.8%); OCT-fibrous plaque (34.0%); attenuation due to calcium (23.2%); attenuation due to macrophage (10.3%); no significant attenuation (6.7%). There was a notable discordance in the diagnostic assessment of TCFA between RF-IVUS and OCT. The majority of RF-derived TCFA were not categorized as fibroatheroma using OCT, while all OCT-TCFA were classified as TCFA by RF-IVUS. ClinicalTrials.gov Identifier NCT00962416.</description><identifier>ISSN: 1569-5794</identifier><identifier>EISSN: 1573-0743</identifier><identifier>EISSN: 1875-8312</identifier><identifier>DOI: 10.1007/s10554-021-02272-6</identifier><identifier>PMID: 34236570</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Arteries ; Attenuation ; Biomarkers ; Cardiac Imaging ; Cardiology ; Coronary artery ; Coronary Artery Disease - diagnostic imaging ; Coronary Artery Disease - therapy ; Coronary Vessels - diagnostic imaging ; Discordance ; Gray scale ; Heart attacks ; Humans ; Imaging ; Lesions ; Macrophages ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Myocardial Infarction ; Optical Coherence Tomography ; Original Paper ; Plaque, Atherosclerotic ; Plaques ; Predictive Value of Tests ; Radio frequency ; Radiology ; Segments ; Stents ; Tomography ; Tomography, Optical Coherence ; Ultrasonic imaging ; Ultrasonography, Interventional ; Ultrasound</subject><ispartof>The International Journal of Cardiovascular Imaging, 2021-10, Vol.37 (10), p.2839-2847</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-9a3f61afe0d1dfaf26a6345097282ceb1601a34529f9220695904e41b25f739c3</citedby><cites>FETCH-LOGICAL-c474t-9a3f61afe0d1dfaf26a6345097282ceb1601a34529f9220695904e41b25f739c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10554-021-02272-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10554-021-02272-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34236570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ueki, Yasushi</creatorcontrib><creatorcontrib>Yamaji, Kyohei</creatorcontrib><creatorcontrib>Losdat, Sylvain</creatorcontrib><creatorcontrib>Karagiannis, Alexios</creatorcontrib><creatorcontrib>Taniwaki, Masanori</creatorcontrib><creatorcontrib>Roffi, Marco</creatorcontrib><creatorcontrib>Otsuka, Tatsuhiko</creatorcontrib><creatorcontrib>Koskinas, Konstantinos C.</creatorcontrib><creatorcontrib>Holmvang, Lene</creatorcontrib><creatorcontrib>Maldonado, Rafaela</creatorcontrib><creatorcontrib>Pedrazzini, Giovanni</creatorcontrib><creatorcontrib>Radu, Maria D.</creatorcontrib><creatorcontrib>Dijkstra, Jouke</creatorcontrib><creatorcontrib>Windecker, Stephan</creatorcontrib><creatorcontrib>Garcia-Garcia, Hector M.</creatorcontrib><creatorcontrib>Räber, Lorenz</creatorcontrib><title>Discordance in the diagnostic assessment of vulnerable plaques between radiofrequency intravascular ultrasound versus optical coherence tomography among patients with acute myocardial infarction: insights from the IBIS-4 study</title><title>The International Journal of Cardiovascular Imaging</title><addtitle>Int J Cardiovasc Imaging</addtitle><addtitle>Int J Cardiovasc Imaging</addtitle><description>We aimed to evaluate the diagnostic agreement between radiofrequency (RF) intravascular ultrasound (IVUS) and optical coherence tomography (OCT) for thin-cap fibroatheroma (TCFA) in non-infarct-related coronary arteries (non-IRA) in patients with ST-segment elevation myocardial infarction (STEMI). In the Integrated Biomarker Imaging Study (IBIS-4), 103 STEMI patients underwent OCT and RF-IVUS imaging of non-IRA after successful primary percutaneous coronary intervention and at 13-month follow-up. A coronary lesion was defined as a segment with ≥ 3 consecutive frames (≈1.2 mm) with plaque burden ≥ 40% as assessed by grayscale IVUS. RF-IVUS-derived TCFA was defined as a lesion with &gt; 10% confluent necrotic core abutting to the lumen in &gt; 10% of the circumference. OCT-TCFA was defined by a minimum cap thickness &lt; 65 μm. The two modalities were matched based on anatomical landmarks using a dedicated matching software. Using grayscale IVUS, we identified 276 lesions at baseline (N = 146) and follow-up (N = 130). Using RF-IVUS, 208 lesions (75.4%) were classified as TCFA. Among them, OCT identified 14 (6.7%) TCFA, 60 (28.8%) thick-cap fibroatheroma (ThCFA), and 134 (64.4%) non-fibroatheroma. All OCT-TCFA (n = 14) were confirmed as RF-TCFA. The concordance rate between RF-IVUS and OCT for TCFA diagnosis was 29.7%. The reasons for discordance were: OCT-ThCFA (25.8%); OCT-fibrous plaque (34.0%); attenuation due to calcium (23.2%); attenuation due to macrophage (10.3%); no significant attenuation (6.7%). There was a notable discordance in the diagnostic assessment of TCFA between RF-IVUS and OCT. The majority of RF-derived TCFA were not categorized as fibroatheroma using OCT, while all OCT-TCFA were classified as TCFA by RF-IVUS. ClinicalTrials.gov Identifier NCT00962416.</description><subject>Arteries</subject><subject>Attenuation</subject><subject>Biomarkers</subject><subject>Cardiac Imaging</subject><subject>Cardiology</subject><subject>Coronary artery</subject><subject>Coronary Artery Disease - diagnostic imaging</subject><subject>Coronary Artery Disease - therapy</subject><subject>Coronary Vessels - diagnostic imaging</subject><subject>Discordance</subject><subject>Gray scale</subject><subject>Heart attacks</subject><subject>Humans</subject><subject>Imaging</subject><subject>Lesions</subject><subject>Macrophages</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Myocardial Infarction</subject><subject>Optical Coherence Tomography</subject><subject>Original Paper</subject><subject>Plaque, Atherosclerotic</subject><subject>Plaques</subject><subject>Predictive Value of Tests</subject><subject>Radio frequency</subject><subject>Radiology</subject><subject>Segments</subject><subject>Stents</subject><subject>Tomography</subject><subject>Tomography, Optical Coherence</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography, Interventional</subject><subject>Ultrasound</subject><issn>1569-5794</issn><issn>1573-0743</issn><issn>1875-8312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9Ustu1DAUjRCIlsIPsECW2LAJOI7jjFkglfIaqRILYG3dca4TV4kdbGeq-V2-BKdTymPBwrJ977nnvk5RPK3oy4rS9lWsaNPwkrIqH9ayUtwrTqumrUva8vr--haybFrJT4pHMV5RShll9cPipOasFk1LT4sf72zUPnTgNBLrSBqQdBZ652OymkCMGOOELhFvyH4ZHQbYjUjmEb4vGMkO0zWiIwE6603AbHT6kJlSgD1EvYwQyDLmX_SL68geQ1wi8XNmh5FoP2DANXfyk-8DzMOBwORdT2ZINueN5NqmgYBeEpLp4DWEXN-YMxgIOlnvXud3tP2QoSb46aaF7dvtl5KTmJbu8Lh4YGCM-OT2Piu-fXj_9eJTefn54_bi_LLUvOWplFAbUYFB2lWdAcMEiJo3VLZswzTuKkEryAYmjWSMCtlIypFXO9aYtpa6PiveHHnnZTdhp3GdwajmYCcIB-XBqr89zg6q93u14ZIL0WaCF7cEwa_DTWrKy8FxBId-iYo1XIqN3DQiQ5__A73yS3C5vYzKC28p36wodkTp4GMMaO6KqahaJaSOElJZQupGQmoNevZnG3chvzSTAfURELPL9Rh-5_4P7U9hc9mV</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Ueki, Yasushi</creator><creator>Yamaji, Kyohei</creator><creator>Losdat, Sylvain</creator><creator>Karagiannis, Alexios</creator><creator>Taniwaki, Masanori</creator><creator>Roffi, Marco</creator><creator>Otsuka, Tatsuhiko</creator><creator>Koskinas, Konstantinos C.</creator><creator>Holmvang, Lene</creator><creator>Maldonado, Rafaela</creator><creator>Pedrazzini, Giovanni</creator><creator>Radu, Maria D.</creator><creator>Dijkstra, Jouke</creator><creator>Windecker, Stephan</creator><creator>Garcia-Garcia, Hector M.</creator><creator>Räber, Lorenz</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20211001</creationdate><title>Discordance in the diagnostic assessment of vulnerable plaques between radiofrequency intravascular ultrasound versus optical coherence tomography among patients with acute myocardial infarction: insights from the IBIS-4 study</title><author>Ueki, Yasushi ; Yamaji, Kyohei ; Losdat, Sylvain ; Karagiannis, Alexios ; Taniwaki, Masanori ; Roffi, Marco ; Otsuka, Tatsuhiko ; Koskinas, Konstantinos C. ; Holmvang, Lene ; Maldonado, Rafaela ; Pedrazzini, Giovanni ; Radu, Maria D. ; Dijkstra, Jouke ; Windecker, Stephan ; Garcia-Garcia, Hector M. ; Räber, Lorenz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-9a3f61afe0d1dfaf26a6345097282ceb1601a34529f9220695904e41b25f739c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arteries</topic><topic>Attenuation</topic><topic>Biomarkers</topic><topic>Cardiac Imaging</topic><topic>Cardiology</topic><topic>Coronary artery</topic><topic>Coronary Artery Disease - diagnostic imaging</topic><topic>Coronary Artery Disease - therapy</topic><topic>Coronary Vessels - diagnostic imaging</topic><topic>Discordance</topic><topic>Gray scale</topic><topic>Heart attacks</topic><topic>Humans</topic><topic>Imaging</topic><topic>Lesions</topic><topic>Macrophages</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Myocardial Infarction</topic><topic>Optical Coherence Tomography</topic><topic>Original Paper</topic><topic>Plaque, Atherosclerotic</topic><topic>Plaques</topic><topic>Predictive Value of Tests</topic><topic>Radio frequency</topic><topic>Radiology</topic><topic>Segments</topic><topic>Stents</topic><topic>Tomography</topic><topic>Tomography, Optical Coherence</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography, Interventional</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ueki, Yasushi</creatorcontrib><creatorcontrib>Yamaji, Kyohei</creatorcontrib><creatorcontrib>Losdat, Sylvain</creatorcontrib><creatorcontrib>Karagiannis, Alexios</creatorcontrib><creatorcontrib>Taniwaki, Masanori</creatorcontrib><creatorcontrib>Roffi, Marco</creatorcontrib><creatorcontrib>Otsuka, Tatsuhiko</creatorcontrib><creatorcontrib>Koskinas, Konstantinos C.</creatorcontrib><creatorcontrib>Holmvang, Lene</creatorcontrib><creatorcontrib>Maldonado, Rafaela</creatorcontrib><creatorcontrib>Pedrazzini, Giovanni</creatorcontrib><creatorcontrib>Radu, Maria D.</creatorcontrib><creatorcontrib>Dijkstra, Jouke</creatorcontrib><creatorcontrib>Windecker, Stephan</creatorcontrib><creatorcontrib>Garcia-Garcia, Hector M.</creatorcontrib><creatorcontrib>Räber, Lorenz</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The International Journal of Cardiovascular Imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ueki, Yasushi</au><au>Yamaji, Kyohei</au><au>Losdat, Sylvain</au><au>Karagiannis, Alexios</au><au>Taniwaki, Masanori</au><au>Roffi, Marco</au><au>Otsuka, Tatsuhiko</au><au>Koskinas, Konstantinos C.</au><au>Holmvang, Lene</au><au>Maldonado, Rafaela</au><au>Pedrazzini, Giovanni</au><au>Radu, Maria D.</au><au>Dijkstra, Jouke</au><au>Windecker, Stephan</au><au>Garcia-Garcia, Hector M.</au><au>Räber, Lorenz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discordance in the diagnostic assessment of vulnerable plaques between radiofrequency intravascular ultrasound versus optical coherence tomography among patients with acute myocardial infarction: insights from the IBIS-4 study</atitle><jtitle>The International Journal of Cardiovascular Imaging</jtitle><stitle>Int J Cardiovasc Imaging</stitle><addtitle>Int J Cardiovasc Imaging</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>37</volume><issue>10</issue><spage>2839</spage><epage>2847</epage><pages>2839-2847</pages><issn>1569-5794</issn><eissn>1573-0743</eissn><eissn>1875-8312</eissn><abstract>We aimed to evaluate the diagnostic agreement between radiofrequency (RF) intravascular ultrasound (IVUS) and optical coherence tomography (OCT) for thin-cap fibroatheroma (TCFA) in non-infarct-related coronary arteries (non-IRA) in patients with ST-segment elevation myocardial infarction (STEMI). In the Integrated Biomarker Imaging Study (IBIS-4), 103 STEMI patients underwent OCT and RF-IVUS imaging of non-IRA after successful primary percutaneous coronary intervention and at 13-month follow-up. A coronary lesion was defined as a segment with ≥ 3 consecutive frames (≈1.2 mm) with plaque burden ≥ 40% as assessed by grayscale IVUS. RF-IVUS-derived TCFA was defined as a lesion with &gt; 10% confluent necrotic core abutting to the lumen in &gt; 10% of the circumference. OCT-TCFA was defined by a minimum cap thickness &lt; 65 μm. The two modalities were matched based on anatomical landmarks using a dedicated matching software. Using grayscale IVUS, we identified 276 lesions at baseline (N = 146) and follow-up (N = 130). Using RF-IVUS, 208 lesions (75.4%) were classified as TCFA. Among them, OCT identified 14 (6.7%) TCFA, 60 (28.8%) thick-cap fibroatheroma (ThCFA), and 134 (64.4%) non-fibroatheroma. All OCT-TCFA (n = 14) were confirmed as RF-TCFA. The concordance rate between RF-IVUS and OCT for TCFA diagnosis was 29.7%. The reasons for discordance were: OCT-ThCFA (25.8%); OCT-fibrous plaque (34.0%); attenuation due to calcium (23.2%); attenuation due to macrophage (10.3%); no significant attenuation (6.7%). There was a notable discordance in the diagnostic assessment of TCFA between RF-IVUS and OCT. The majority of RF-derived TCFA were not categorized as fibroatheroma using OCT, while all OCT-TCFA were classified as TCFA by RF-IVUS. ClinicalTrials.gov Identifier NCT00962416.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>34236570</pmid><doi>10.1007/s10554-021-02272-6</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1569-5794
ispartof The International Journal of Cardiovascular Imaging, 2021-10, Vol.37 (10), p.2839-2847
issn 1569-5794
1573-0743
1875-8312
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8494667
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Arteries
Attenuation
Biomarkers
Cardiac Imaging
Cardiology
Coronary artery
Coronary Artery Disease - diagnostic imaging
Coronary Artery Disease - therapy
Coronary Vessels - diagnostic imaging
Discordance
Gray scale
Heart attacks
Humans
Imaging
Lesions
Macrophages
Medical imaging
Medicine
Medicine & Public Health
Myocardial Infarction
Optical Coherence Tomography
Original Paper
Plaque, Atherosclerotic
Plaques
Predictive Value of Tests
Radio frequency
Radiology
Segments
Stents
Tomography
Tomography, Optical Coherence
Ultrasonic imaging
Ultrasonography, Interventional
Ultrasound
title Discordance in the diagnostic assessment of vulnerable plaques between radiofrequency intravascular ultrasound versus optical coherence tomography among patients with acute myocardial infarction: insights from the IBIS-4 study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discordance%20in%20the%20diagnostic%20assessment%20of%20vulnerable%20plaques%20between%20radiofrequency%20intravascular%20ultrasound%20versus%20optical%20coherence%20tomography%20among%20patients%20with%20acute%20myocardial%20infarction:%20insights%20from%20the%20IBIS-4%20study&rft.jtitle=The%20International%20Journal%20of%20Cardiovascular%20Imaging&rft.au=Ueki,%20Yasushi&rft.date=2021-10-01&rft.volume=37&rft.issue=10&rft.spage=2839&rft.epage=2847&rft.pages=2839-2847&rft.issn=1569-5794&rft.eissn=1573-0743&rft_id=info:doi/10.1007/s10554-021-02272-6&rft_dat=%3Cproquest_pubme%3E2549689856%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579470486&rft_id=info:pmid/34236570&rfr_iscdi=true