A Data Collection Strategy for Heterogeneous Wireless Sensor Networks Based on Energy Efficiency and Collaborative Optimization
In the clustering routing protocol, prolonging the lifetime of the sensor network depends to a large extent on the rationality of the cluster head node selection. The selection of cluster heads for heterogeneous wireless sensor networks (HWSNs) does not consider the remaining energy of the current n...
Gespeichert in:
Veröffentlicht in: | Computational intelligence and neuroscience 2021, Vol.2021 (1), p.9808449-9808449 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9808449 |
---|---|
container_issue | 1 |
container_start_page | 9808449 |
container_title | Computational intelligence and neuroscience |
container_volume | 2021 |
creator | Cao, Li Yue, Yinggao Zhang, Yong |
description | In the clustering routing protocol, prolonging the lifetime of the sensor network depends to a large extent on the rationality of the cluster head node selection. The selection of cluster heads for heterogeneous wireless sensor networks (HWSNs) does not consider the remaining energy of the current nodes and the distribution of nodes, which leads to an imbalance of network energy consumption. A strategy for selecting cluster heads of HWSNs based on the improved sparrow search algorithm- (ISSA-) optimized self-organizing maps (SOM) is proposed. In the stage of cluster head selection, the proposed algorithm establishes a competitive neural network model at the base station and takes the nodes of the competing cluster heads as the input vector. Each input vector includes three elements: the remaining energy of the node, the distance from the node to the base station, and the number of neighbor nodes of the node. The best cluster head is selected through the adaptive learning of the improved competitive neural network. When selecting the cluster head node, comprehensively consider the remaining energy, the distance, and the number of times the node becomes a cluster head and optimize the cluster head node selection strategy to extend the network life cycle. Simulation experiments show that the new algorithm can reduce the energy consumption of the network more effectively than the basic competitive neural network and other algorithms, balance the energy consumption of the network, and further prolong the lifetime of the sensor network. |
doi_str_mv | 10.1155/2021/9808449 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8494558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696852349</galeid><sourcerecordid>A696852349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-e5c781114eaf12b59d3d7c740b76a2ae22c3fa0850d8a6db3dd8fc254fa9b7cb3</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhlcIREvhxg-wxAUJQr1ez659QQohUKSKHgriaHntceqysYO9aZVe-tdxPlQEB062NM884_FbVS9r-q6uAU4ZZfWpFFRwLh9Vx3Urugmwrnn8cG_hqHqW8zWl0AFlT6ujhrcNBZDH1f2UfNSjJrM4DGhGHwO5HJMecbEhLiZyhiOmuMCAcZ3JD59wwJzJJYZcql9xvI3pZyYfdEZLSvM8YCqtc-e88RjMhuhgd3bdx-L1N0guVqNf-ju9nfa8euL0kPHF4Typvn-af5udTc4vPn-ZTc8nhkMzThBMJ-q65qhdzXqQtrGd6Tjtu1YzjYyZxmkqgFqhW9s31gpnGHCnZd-Zvjmp3u-9q3W_RGswlC0HtUp-qdNGRe3V35Xgr9Qi3ijBJQcQRfD6IEjx1xrzqJY-Gyx77b5GMRBUciYFFPTVP-h1XKdQ1ttRIDgD-oda6AGVDy6WuWYrVdNWtgJYw2Wh3u4pk2LOCd3Dk2uqtvmrbf7qkH_B3-zxKx-svvX_p38Di4ev5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580584250</pqid></control><display><type>article</type><title>A Data Collection Strategy for Heterogeneous Wireless Sensor Networks Based on Energy Efficiency and Collaborative Optimization</title><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Cao, Li ; Yue, Yinggao ; Zhang, Yong</creator><contributor>Lo Bosco, Giosuè ; Giosuè Lo Bosco</contributor><creatorcontrib>Cao, Li ; Yue, Yinggao ; Zhang, Yong ; Lo Bosco, Giosuè ; Giosuè Lo Bosco</creatorcontrib><description>In the clustering routing protocol, prolonging the lifetime of the sensor network depends to a large extent on the rationality of the cluster head node selection. The selection of cluster heads for heterogeneous wireless sensor networks (HWSNs) does not consider the remaining energy of the current nodes and the distribution of nodes, which leads to an imbalance of network energy consumption. A strategy for selecting cluster heads of HWSNs based on the improved sparrow search algorithm- (ISSA-) optimized self-organizing maps (SOM) is proposed. In the stage of cluster head selection, the proposed algorithm establishes a competitive neural network model at the base station and takes the nodes of the competing cluster heads as the input vector. Each input vector includes three elements: the remaining energy of the node, the distance from the node to the base station, and the number of neighbor nodes of the node. The best cluster head is selected through the adaptive learning of the improved competitive neural network. When selecting the cluster head node, comprehensively consider the remaining energy, the distance, and the number of times the node becomes a cluster head and optimize the cluster head node selection strategy to extend the network life cycle. Simulation experiments show that the new algorithm can reduce the energy consumption of the network more effectively than the basic competitive neural network and other algorithms, balance the energy consumption of the network, and further prolong the lifetime of the sensor network.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2021/9808449</identifier><identifier>PMID: 34630559</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Analysis ; Clustering ; Collaboration ; Competition ; Data collection ; Data entry ; Decision making ; Energy consumption ; Energy efficiency ; Energy use ; Genetic algorithms ; Life cycles ; Neural networks ; Nodes ; Optimization ; Optimization algorithms ; Performance evaluation ; Radio equipment ; Routing (telecommunications) ; Search algorithms ; Self organizing maps ; Sensors ; Strategy ; Wireless networks ; Wireless sensor networks</subject><ispartof>Computational intelligence and neuroscience, 2021, Vol.2021 (1), p.9808449-9808449</ispartof><rights>Copyright © 2021 Li Cao et al.</rights><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><rights>Copyright © 2021 Li Cao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Li Cao et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-e5c781114eaf12b59d3d7c740b76a2ae22c3fa0850d8a6db3dd8fc254fa9b7cb3</citedby><cites>FETCH-LOGICAL-c453t-e5c781114eaf12b59d3d7c740b76a2ae22c3fa0850d8a6db3dd8fc254fa9b7cb3</cites><orcidid>0000-0003-1898-3677 ; 0000-0002-5582-8791 ; 0000-0003-0728-5048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494558/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494558/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids></links><search><contributor>Lo Bosco, Giosuè</contributor><contributor>Giosuè Lo Bosco</contributor><creatorcontrib>Cao, Li</creatorcontrib><creatorcontrib>Yue, Yinggao</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><title>A Data Collection Strategy for Heterogeneous Wireless Sensor Networks Based on Energy Efficiency and Collaborative Optimization</title><title>Computational intelligence and neuroscience</title><description>In the clustering routing protocol, prolonging the lifetime of the sensor network depends to a large extent on the rationality of the cluster head node selection. The selection of cluster heads for heterogeneous wireless sensor networks (HWSNs) does not consider the remaining energy of the current nodes and the distribution of nodes, which leads to an imbalance of network energy consumption. A strategy for selecting cluster heads of HWSNs based on the improved sparrow search algorithm- (ISSA-) optimized self-organizing maps (SOM) is proposed. In the stage of cluster head selection, the proposed algorithm establishes a competitive neural network model at the base station and takes the nodes of the competing cluster heads as the input vector. Each input vector includes three elements: the remaining energy of the node, the distance from the node to the base station, and the number of neighbor nodes of the node. The best cluster head is selected through the adaptive learning of the improved competitive neural network. When selecting the cluster head node, comprehensively consider the remaining energy, the distance, and the number of times the node becomes a cluster head and optimize the cluster head node selection strategy to extend the network life cycle. Simulation experiments show that the new algorithm can reduce the energy consumption of the network more effectively than the basic competitive neural network and other algorithms, balance the energy consumption of the network, and further prolong the lifetime of the sensor network.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Clustering</subject><subject>Collaboration</subject><subject>Competition</subject><subject>Data collection</subject><subject>Data entry</subject><subject>Decision making</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy use</subject><subject>Genetic algorithms</subject><subject>Life cycles</subject><subject>Neural networks</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Performance evaluation</subject><subject>Radio equipment</subject><subject>Routing (telecommunications)</subject><subject>Search algorithms</subject><subject>Self organizing maps</subject><subject>Sensors</subject><subject>Strategy</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1vEzEQhlcIREvhxg-wxAUJQr1ez659QQohUKSKHgriaHntceqysYO9aZVe-tdxPlQEB062NM884_FbVS9r-q6uAU4ZZfWpFFRwLh9Vx3Urugmwrnn8cG_hqHqW8zWl0AFlT6ujhrcNBZDH1f2UfNSjJrM4DGhGHwO5HJMecbEhLiZyhiOmuMCAcZ3JD59wwJzJJYZcql9xvI3pZyYfdEZLSvM8YCqtc-e88RjMhuhgd3bdx-L1N0guVqNf-ju9nfa8euL0kPHF4Typvn-af5udTc4vPn-ZTc8nhkMzThBMJ-q65qhdzXqQtrGd6Tjtu1YzjYyZxmkqgFqhW9s31gpnGHCnZd-Zvjmp3u-9q3W_RGswlC0HtUp-qdNGRe3V35Xgr9Qi3ijBJQcQRfD6IEjx1xrzqJY-Gyx77b5GMRBUciYFFPTVP-h1XKdQ1ttRIDgD-oda6AGVDy6WuWYrVdNWtgJYw2Wh3u4pk2LOCd3Dk2uqtvmrbf7qkH_B3-zxKx-svvX_p38Di4ev5Q</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Cao, Li</creator><creator>Yue, Yinggao</creator><creator>Zhang, Yong</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1898-3677</orcidid><orcidid>https://orcid.org/0000-0002-5582-8791</orcidid><orcidid>https://orcid.org/0000-0003-0728-5048</orcidid></search><sort><creationdate>2021</creationdate><title>A Data Collection Strategy for Heterogeneous Wireless Sensor Networks Based on Energy Efficiency and Collaborative Optimization</title><author>Cao, Li ; Yue, Yinggao ; Zhang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-e5c781114eaf12b59d3d7c740b76a2ae22c3fa0850d8a6db3dd8fc254fa9b7cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Clustering</topic><topic>Collaboration</topic><topic>Competition</topic><topic>Data collection</topic><topic>Data entry</topic><topic>Decision making</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy use</topic><topic>Genetic algorithms</topic><topic>Life cycles</topic><topic>Neural networks</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Performance evaluation</topic><topic>Radio equipment</topic><topic>Routing (telecommunications)</topic><topic>Search algorithms</topic><topic>Self organizing maps</topic><topic>Sensors</topic><topic>Strategy</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Li</creatorcontrib><creatorcontrib>Yue, Yinggao</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Li</au><au>Yue, Yinggao</au><au>Zhang, Yong</au><au>Lo Bosco, Giosuè</au><au>Giosuè Lo Bosco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data Collection Strategy for Heterogeneous Wireless Sensor Networks Based on Energy Efficiency and Collaborative Optimization</atitle><jtitle>Computational intelligence and neuroscience</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><spage>9808449</spage><epage>9808449</epage><pages>9808449-9808449</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>In the clustering routing protocol, prolonging the lifetime of the sensor network depends to a large extent on the rationality of the cluster head node selection. The selection of cluster heads for heterogeneous wireless sensor networks (HWSNs) does not consider the remaining energy of the current nodes and the distribution of nodes, which leads to an imbalance of network energy consumption. A strategy for selecting cluster heads of HWSNs based on the improved sparrow search algorithm- (ISSA-) optimized self-organizing maps (SOM) is proposed. In the stage of cluster head selection, the proposed algorithm establishes a competitive neural network model at the base station and takes the nodes of the competing cluster heads as the input vector. Each input vector includes three elements: the remaining energy of the node, the distance from the node to the base station, and the number of neighbor nodes of the node. The best cluster head is selected through the adaptive learning of the improved competitive neural network. When selecting the cluster head node, comprehensively consider the remaining energy, the distance, and the number of times the node becomes a cluster head and optimize the cluster head node selection strategy to extend the network life cycle. Simulation experiments show that the new algorithm can reduce the energy consumption of the network more effectively than the basic competitive neural network and other algorithms, balance the energy consumption of the network, and further prolong the lifetime of the sensor network.</abstract><cop>New York</cop><pub>Hindawi</pub><pmid>34630559</pmid><doi>10.1155/2021/9808449</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1898-3677</orcidid><orcidid>https://orcid.org/0000-0002-5582-8791</orcidid><orcidid>https://orcid.org/0000-0003-0728-5048</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5265 |
ispartof | Computational intelligence and neuroscience, 2021, Vol.2021 (1), p.9808449-9808449 |
issn | 1687-5265 1687-5273 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8494558 |
source | PubMed Central Open Access; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Analysis Clustering Collaboration Competition Data collection Data entry Decision making Energy consumption Energy efficiency Energy use Genetic algorithms Life cycles Neural networks Nodes Optimization Optimization algorithms Performance evaluation Radio equipment Routing (telecommunications) Search algorithms Self organizing maps Sensors Strategy Wireless networks Wireless sensor networks |
title | A Data Collection Strategy for Heterogeneous Wireless Sensor Networks Based on Energy Efficiency and Collaborative Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data%20Collection%20Strategy%20for%20Heterogeneous%20Wireless%20Sensor%20Networks%20Based%20on%20Energy%20Efficiency%20and%20Collaborative%20Optimization&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Cao,%20Li&rft.date=2021&rft.volume=2021&rft.issue=1&rft.spage=9808449&rft.epage=9808449&rft.pages=9808449-9808449&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2021/9808449&rft_dat=%3Cgale_pubme%3EA696852349%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580584250&rft_id=info:pmid/34630559&rft_galeid=A696852349&rfr_iscdi=true |