UNMASC: tumor-only variant calling with unmatched normal controls

Despite years of progress, mutation detection in cancer samples continues to require significant manual review as a final step. Expert review is particularly challenging in cases where tumors are sequenced without matched normal control DNA. Attempts have been made to call somatic point mutations wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NAR cancer 2021-12, Vol.3 (4), p.zcab040-zcab040
Hauptverfasser: Little, Paul, Jo, Heejoon, Hoyle, Alan, Mazul, Angela, Zhao, Xiaobei, Salazar, Ashley H, Farquhar, Douglas, Sheth, Siddharth, Masood, Maheer, Hayward, Michele C, Parker, Joel S, Hoadley, Katherine A, Zevallos, Jose, Hayes, D Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page zcab040
container_issue 4
container_start_page zcab040
container_title NAR cancer
container_volume 3
creator Little, Paul
Jo, Heejoon
Hoyle, Alan
Mazul, Angela
Zhao, Xiaobei
Salazar, Ashley H
Farquhar, Douglas
Sheth, Siddharth
Masood, Maheer
Hayward, Michele C
Parker, Joel S
Hoadley, Katherine A
Zevallos, Jose
Hayes, D Neil
description Despite years of progress, mutation detection in cancer samples continues to require significant manual review as a final step. Expert review is particularly challenging in cases where tumors are sequenced without matched normal control DNA. Attempts have been made to call somatic point mutations without a matched normal sample by removing well-known germline variants, utilizing unmatched normal controls, and constructing decision rules to classify sequencing errors and private germline variants. With budgetary constraints related to computational and sequencing costs, finding the appropriate number of controls is a crucial step to identifying somatic variants. Our approach utilizes public databases for canonical somatic variants as well as germline variants and leverages information gathered about nearby positions in the normal controls. Drawing from our cohort of targeted capture panel sequencing of tumor and normal samples with varying tumortypes and demographics, these served as a benchmark for our tumor-only variant calling pipeline to observe the relationship between our ability to correctly classify variants against a number of unmatched normals. With our benchmarked samples, approximately ten normal controls were needed to maintain 94% sensitivity, 99% specificity and 76% positive predictive value, far outperforming comparable methods. Our approach, called UNMASC, also serves as a supplement to traditional tumor with matched normal variant calling workflows and can potentially extend to other concerns arising from analyzing next generation sequencing data.
doi_str_mv 10.1093/narcan/zcab040
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8494212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580940007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3182-31a444661020d7545e7cfb742e612a0c4e25f80a54b55a65d31111c3377c5cc73</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdRrNRePe_RS9r9TFIPQil-QdWD9rxMNps2stmtu0ml_npTWkTnMgPv8LzwIHRFyZiSKZ84CBrc5FtDQQQ5QRcs5SzJ00yc_rkHaBTjByGEScoYTc_RgIs-5Hl-gWbLl-fZ2_wGt13jQ-Kd3eEthBpcizVYW7sV_qrbNe5cA61emxI7HxqwWHvXBm_jJTqrwEYzOu4hWt7fvc8fk8Xrw9N8tkg0pzlLOAUhRJpSwkiZSSFNpqsiE8yklAHRwjBZ5QSkKKSEVJac9qM5zzIttc74EN0euJuuaEypTV8PVm1C3UDYKQ-1-p-4eq1WfqtyMRWMsh5wfQQE_9mZ2KqmjtpYC874LiomczIVvad91_jwqoOPMZjqt4YStVevDurVUT3_AWVad1U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580940007</pqid></control><display><type>article</type><title>UNMASC: tumor-only variant calling with unmatched normal controls</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Little, Paul ; Jo, Heejoon ; Hoyle, Alan ; Mazul, Angela ; Zhao, Xiaobei ; Salazar, Ashley H ; Farquhar, Douglas ; Sheth, Siddharth ; Masood, Maheer ; Hayward, Michele C ; Parker, Joel S ; Hoadley, Katherine A ; Zevallos, Jose ; Hayes, D Neil</creator><creatorcontrib>Little, Paul ; Jo, Heejoon ; Hoyle, Alan ; Mazul, Angela ; Zhao, Xiaobei ; Salazar, Ashley H ; Farquhar, Douglas ; Sheth, Siddharth ; Masood, Maheer ; Hayward, Michele C ; Parker, Joel S ; Hoadley, Katherine A ; Zevallos, Jose ; Hayes, D Neil</creatorcontrib><description>Despite years of progress, mutation detection in cancer samples continues to require significant manual review as a final step. Expert review is particularly challenging in cases where tumors are sequenced without matched normal control DNA. Attempts have been made to call somatic point mutations without a matched normal sample by removing well-known germline variants, utilizing unmatched normal controls, and constructing decision rules to classify sequencing errors and private germline variants. With budgetary constraints related to computational and sequencing costs, finding the appropriate number of controls is a crucial step to identifying somatic variants. Our approach utilizes public databases for canonical somatic variants as well as germline variants and leverages information gathered about nearby positions in the normal controls. Drawing from our cohort of targeted capture panel sequencing of tumor and normal samples with varying tumortypes and demographics, these served as a benchmark for our tumor-only variant calling pipeline to observe the relationship between our ability to correctly classify variants against a number of unmatched normals. With our benchmarked samples, approximately ten normal controls were needed to maintain 94% sensitivity, 99% specificity and 76% positive predictive value, far outperforming comparable methods. Our approach, called UNMASC, also serves as a supplement to traditional tumor with matched normal variant calling workflows and can potentially extend to other concerns arising from analyzing next generation sequencing data.</description><identifier>ISSN: 2632-8674</identifier><identifier>EISSN: 2632-8674</identifier><identifier>DOI: 10.1093/narcan/zcab040</identifier><identifier>PMID: 34632388</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Cancer Computational Biology</subject><ispartof>NAR cancer, 2021-12, Vol.3 (4), p.zcab040-zcab040</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of NAR Cancer. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3182-31a444661020d7545e7cfb742e612a0c4e25f80a54b55a65d31111c3377c5cc73</citedby><cites>FETCH-LOGICAL-c3182-31a444661020d7545e7cfb742e612a0c4e25f80a54b55a65d31111c3377c5cc73</cites><orcidid>0000-0002-9789-8501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494212/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494212/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Little, Paul</creatorcontrib><creatorcontrib>Jo, Heejoon</creatorcontrib><creatorcontrib>Hoyle, Alan</creatorcontrib><creatorcontrib>Mazul, Angela</creatorcontrib><creatorcontrib>Zhao, Xiaobei</creatorcontrib><creatorcontrib>Salazar, Ashley H</creatorcontrib><creatorcontrib>Farquhar, Douglas</creatorcontrib><creatorcontrib>Sheth, Siddharth</creatorcontrib><creatorcontrib>Masood, Maheer</creatorcontrib><creatorcontrib>Hayward, Michele C</creatorcontrib><creatorcontrib>Parker, Joel S</creatorcontrib><creatorcontrib>Hoadley, Katherine A</creatorcontrib><creatorcontrib>Zevallos, Jose</creatorcontrib><creatorcontrib>Hayes, D Neil</creatorcontrib><title>UNMASC: tumor-only variant calling with unmatched normal controls</title><title>NAR cancer</title><description>Despite years of progress, mutation detection in cancer samples continues to require significant manual review as a final step. Expert review is particularly challenging in cases where tumors are sequenced without matched normal control DNA. Attempts have been made to call somatic point mutations without a matched normal sample by removing well-known germline variants, utilizing unmatched normal controls, and constructing decision rules to classify sequencing errors and private germline variants. With budgetary constraints related to computational and sequencing costs, finding the appropriate number of controls is a crucial step to identifying somatic variants. Our approach utilizes public databases for canonical somatic variants as well as germline variants and leverages information gathered about nearby positions in the normal controls. Drawing from our cohort of targeted capture panel sequencing of tumor and normal samples with varying tumortypes and demographics, these served as a benchmark for our tumor-only variant calling pipeline to observe the relationship between our ability to correctly classify variants against a number of unmatched normals. With our benchmarked samples, approximately ten normal controls were needed to maintain 94% sensitivity, 99% specificity and 76% positive predictive value, far outperforming comparable methods. Our approach, called UNMASC, also serves as a supplement to traditional tumor with matched normal variant calling workflows and can potentially extend to other concerns arising from analyzing next generation sequencing data.</description><subject>Cancer Computational Biology</subject><issn>2632-8674</issn><issn>2632-8674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkE1Lw0AQhhdRrNRePe_RS9r9TFIPQil-QdWD9rxMNps2stmtu0ml_npTWkTnMgPv8LzwIHRFyZiSKZ84CBrc5FtDQQQ5QRcs5SzJ00yc_rkHaBTjByGEScoYTc_RgIs-5Hl-gWbLl-fZ2_wGt13jQ-Kd3eEthBpcizVYW7sV_qrbNe5cA61emxI7HxqwWHvXBm_jJTqrwEYzOu4hWt7fvc8fk8Xrw9N8tkg0pzlLOAUhRJpSwkiZSSFNpqsiE8yklAHRwjBZ5QSkKKSEVJac9qM5zzIttc74EN0euJuuaEypTV8PVm1C3UDYKQ-1-p-4eq1WfqtyMRWMsh5wfQQE_9mZ2KqmjtpYC874LiomczIVvad91_jwqoOPMZjqt4YStVevDurVUT3_AWVad1U</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Little, Paul</creator><creator>Jo, Heejoon</creator><creator>Hoyle, Alan</creator><creator>Mazul, Angela</creator><creator>Zhao, Xiaobei</creator><creator>Salazar, Ashley H</creator><creator>Farquhar, Douglas</creator><creator>Sheth, Siddharth</creator><creator>Masood, Maheer</creator><creator>Hayward, Michele C</creator><creator>Parker, Joel S</creator><creator>Hoadley, Katherine A</creator><creator>Zevallos, Jose</creator><creator>Hayes, D Neil</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9789-8501</orcidid></search><sort><creationdate>20211201</creationdate><title>UNMASC: tumor-only variant calling with unmatched normal controls</title><author>Little, Paul ; Jo, Heejoon ; Hoyle, Alan ; Mazul, Angela ; Zhao, Xiaobei ; Salazar, Ashley H ; Farquhar, Douglas ; Sheth, Siddharth ; Masood, Maheer ; Hayward, Michele C ; Parker, Joel S ; Hoadley, Katherine A ; Zevallos, Jose ; Hayes, D Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3182-31a444661020d7545e7cfb742e612a0c4e25f80a54b55a65d31111c3377c5cc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cancer Computational Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Little, Paul</creatorcontrib><creatorcontrib>Jo, Heejoon</creatorcontrib><creatorcontrib>Hoyle, Alan</creatorcontrib><creatorcontrib>Mazul, Angela</creatorcontrib><creatorcontrib>Zhao, Xiaobei</creatorcontrib><creatorcontrib>Salazar, Ashley H</creatorcontrib><creatorcontrib>Farquhar, Douglas</creatorcontrib><creatorcontrib>Sheth, Siddharth</creatorcontrib><creatorcontrib>Masood, Maheer</creatorcontrib><creatorcontrib>Hayward, Michele C</creatorcontrib><creatorcontrib>Parker, Joel S</creatorcontrib><creatorcontrib>Hoadley, Katherine A</creatorcontrib><creatorcontrib>Zevallos, Jose</creatorcontrib><creatorcontrib>Hayes, D Neil</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NAR cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Little, Paul</au><au>Jo, Heejoon</au><au>Hoyle, Alan</au><au>Mazul, Angela</au><au>Zhao, Xiaobei</au><au>Salazar, Ashley H</au><au>Farquhar, Douglas</au><au>Sheth, Siddharth</au><au>Masood, Maheer</au><au>Hayward, Michele C</au><au>Parker, Joel S</au><au>Hoadley, Katherine A</au><au>Zevallos, Jose</au><au>Hayes, D Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UNMASC: tumor-only variant calling with unmatched normal controls</atitle><jtitle>NAR cancer</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>3</volume><issue>4</issue><spage>zcab040</spage><epage>zcab040</epage><pages>zcab040-zcab040</pages><issn>2632-8674</issn><eissn>2632-8674</eissn><abstract>Despite years of progress, mutation detection in cancer samples continues to require significant manual review as a final step. Expert review is particularly challenging in cases where tumors are sequenced without matched normal control DNA. Attempts have been made to call somatic point mutations without a matched normal sample by removing well-known germline variants, utilizing unmatched normal controls, and constructing decision rules to classify sequencing errors and private germline variants. With budgetary constraints related to computational and sequencing costs, finding the appropriate number of controls is a crucial step to identifying somatic variants. Our approach utilizes public databases for canonical somatic variants as well as germline variants and leverages information gathered about nearby positions in the normal controls. Drawing from our cohort of targeted capture panel sequencing of tumor and normal samples with varying tumortypes and demographics, these served as a benchmark for our tumor-only variant calling pipeline to observe the relationship between our ability to correctly classify variants against a number of unmatched normals. With our benchmarked samples, approximately ten normal controls were needed to maintain 94% sensitivity, 99% specificity and 76% positive predictive value, far outperforming comparable methods. Our approach, called UNMASC, also serves as a supplement to traditional tumor with matched normal variant calling workflows and can potentially extend to other concerns arising from analyzing next generation sequencing data.</abstract><pub>Oxford University Press</pub><pmid>34632388</pmid><doi>10.1093/narcan/zcab040</doi><orcidid>https://orcid.org/0000-0002-9789-8501</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-8674
ispartof NAR cancer, 2021-12, Vol.3 (4), p.zcab040-zcab040
issn 2632-8674
2632-8674
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8494212
source Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; PubMed Central
subjects Cancer Computational Biology
title UNMASC: tumor-only variant calling with unmatched normal controls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UNMASC:%20tumor-only%20variant%20calling%20with%20unmatched%20normal%20controls&rft.jtitle=NAR%20cancer&rft.au=Little,%20Paul&rft.date=2021-12-01&rft.volume=3&rft.issue=4&rft.spage=zcab040&rft.epage=zcab040&rft.pages=zcab040-zcab040&rft.issn=2632-8674&rft.eissn=2632-8674&rft_id=info:doi/10.1093/narcan/zcab040&rft_dat=%3Cproquest_pubme%3E2580940007%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580940007&rft_id=info:pmid/34632388&rfr_iscdi=true