Clustering spatio-temporal series of confirmed COVID-19 deaths in Europe
The impact of the COVID-19 pandemic varied significantly across different countries, with important consequences in the definition of control and response strategies. In this work, to investigate the heterogeneity of this crisis, we analyse the spatial patterns of deaths attributed to COVID-19 in se...
Gespeichert in:
Veröffentlicht in: | Spatial statistics 2022-06, Vol.49, p.100543-100543, Article 100543 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100543 |
---|---|
container_issue | |
container_start_page | 100543 |
container_title | Spatial statistics |
container_volume | 49 |
creator | Bucci, A. Ippoliti, L. Valentini, P. Fontanella, S. |
description | The impact of the COVID-19 pandemic varied significantly across different countries, with important consequences in the definition of control and response strategies. In this work, to investigate the heterogeneity of this crisis, we analyse the spatial patterns of deaths attributed to COVID-19 in several European countries. To this end, we propose a Bayesian nonparametric approach, based on mixture of Gaussian processes coupled with Dirichlet process, to group the COVID-19 mortality curves. The model provides a flexible framework for the analysis of time series data, allowing the inclusion in the clustering procedure of different features of the series, such as spatial correlations, time varying parameters and measurement errors. We evaluate the proposed methodology on the death counts recorded at NUTS-2 regional level for several European countries in the period from March 2020 to February 2021. |
doi_str_mv | 10.1016/j.spasta.2021.100543 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8493647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211675321000531</els_id><sourcerecordid>2580959302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-238c13c679857b86c34f7f2cf25625b564407b1f4c47fc34639f94b7da55bf5a3</originalsourceid><addsrcrecordid>eNp9UctKxDAUDaKoqH8g0qWbjnk27UaQcXyA4EbdhjS90Qydpiap4N-bYXxuzOaG-zjn3HsQOiZ4RjCpzpazOOqY9IxiSnIKC8620D6lhJSVFGz7138PHcW4xPlJjpmgu2iP8YoRjvE-upn3U0wQ3PBcZMjkfJlgNfqg-yLmNMTC28L4wbqwgq6Y3z_dXpakKTrQ6SUWbigWU_AjHKIdq_sIR5_xAD1eLR7mN-Xd_fXt_OKuNJkzlZTVhjBTyaYWsq0rw7iVlhpLRUVFKyrOsWyJ5YZLa9Y6G9vwVnZaiNYKzQ7Q-QZ3nNosyMCQslY1BrfS4V157dTfyuBe1LN_UzVvWMVlBjj9BAj-dYKY1MpFA32vB_BTVFTUuBENwzS38k2rCT7GAPabhmC19kEt1cYHtfZBbXzIYye_JX4PfV39ZwfIh3pzEFQ0DgYDnQtgkuq8-5_hA0aVmnM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580959302</pqid></control><display><type>article</type><title>Clustering spatio-temporal series of confirmed COVID-19 deaths in Europe</title><source>Alma/SFX Local Collection</source><creator>Bucci, A. ; Ippoliti, L. ; Valentini, P. ; Fontanella, S.</creator><creatorcontrib>Bucci, A. ; Ippoliti, L. ; Valentini, P. ; Fontanella, S.</creatorcontrib><description>The impact of the COVID-19 pandemic varied significantly across different countries, with important consequences in the definition of control and response strategies. In this work, to investigate the heterogeneity of this crisis, we analyse the spatial patterns of deaths attributed to COVID-19 in several European countries. To this end, we propose a Bayesian nonparametric approach, based on mixture of Gaussian processes coupled with Dirichlet process, to group the COVID-19 mortality curves. The model provides a flexible framework for the analysis of time series data, allowing the inclusion in the clustering procedure of different features of the series, such as spatial correlations, time varying parameters and measurement errors. We evaluate the proposed methodology on the death counts recorded at NUTS-2 regional level for several European countries in the period from March 2020 to February 2021.</description><identifier>ISSN: 2211-6753</identifier><identifier>EISSN: 2211-6753</identifier><identifier>DOI: 10.1016/j.spasta.2021.100543</identifier><identifier>PMID: 34631400</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bayes nonparametrics ; COVID-19 ; Dynamic linear models ; Model-based clustering ; Spatio-temporal analysis</subject><ispartof>Spatial statistics, 2022-06, Vol.49, p.100543-100543, Article 100543</ispartof><rights>2021 Elsevier B.V.</rights><rights>2021 Elsevier B.V. All rights reserved.</rights><rights>2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-238c13c679857b86c34f7f2cf25625b564407b1f4c47fc34639f94b7da55bf5a3</citedby><cites>FETCH-LOGICAL-c463t-238c13c679857b86c34f7f2cf25625b564407b1f4c47fc34639f94b7da55bf5a3</cites><orcidid>0000-0001-9872-9761 ; 0000-0003-2335-746X ; 0000-0003-1681-9873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34631400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bucci, A.</creatorcontrib><creatorcontrib>Ippoliti, L.</creatorcontrib><creatorcontrib>Valentini, P.</creatorcontrib><creatorcontrib>Fontanella, S.</creatorcontrib><title>Clustering spatio-temporal series of confirmed COVID-19 deaths in Europe</title><title>Spatial statistics</title><addtitle>Spat Stat</addtitle><description>The impact of the COVID-19 pandemic varied significantly across different countries, with important consequences in the definition of control and response strategies. In this work, to investigate the heterogeneity of this crisis, we analyse the spatial patterns of deaths attributed to COVID-19 in several European countries. To this end, we propose a Bayesian nonparametric approach, based on mixture of Gaussian processes coupled with Dirichlet process, to group the COVID-19 mortality curves. The model provides a flexible framework for the analysis of time series data, allowing the inclusion in the clustering procedure of different features of the series, such as spatial correlations, time varying parameters and measurement errors. We evaluate the proposed methodology on the death counts recorded at NUTS-2 regional level for several European countries in the period from March 2020 to February 2021.</description><subject>Bayes nonparametrics</subject><subject>COVID-19</subject><subject>Dynamic linear models</subject><subject>Model-based clustering</subject><subject>Spatio-temporal analysis</subject><issn>2211-6753</issn><issn>2211-6753</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UctKxDAUDaKoqH8g0qWbjnk27UaQcXyA4EbdhjS90Qydpiap4N-bYXxuzOaG-zjn3HsQOiZ4RjCpzpazOOqY9IxiSnIKC8620D6lhJSVFGz7138PHcW4xPlJjpmgu2iP8YoRjvE-upn3U0wQ3PBcZMjkfJlgNfqg-yLmNMTC28L4wbqwgq6Y3z_dXpakKTrQ6SUWbigWU_AjHKIdq_sIR5_xAD1eLR7mN-Xd_fXt_OKuNJkzlZTVhjBTyaYWsq0rw7iVlhpLRUVFKyrOsWyJ5YZLa9Y6G9vwVnZaiNYKzQ7Q-QZ3nNosyMCQslY1BrfS4V157dTfyuBe1LN_UzVvWMVlBjj9BAj-dYKY1MpFA32vB_BTVFTUuBENwzS38k2rCT7GAPabhmC19kEt1cYHtfZBbXzIYye_JX4PfV39ZwfIh3pzEFQ0DgYDnQtgkuq8-5_hA0aVmnM</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Bucci, A.</creator><creator>Ippoliti, L.</creator><creator>Valentini, P.</creator><creator>Fontanella, S.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9872-9761</orcidid><orcidid>https://orcid.org/0000-0003-2335-746X</orcidid><orcidid>https://orcid.org/0000-0003-1681-9873</orcidid></search><sort><creationdate>20220601</creationdate><title>Clustering spatio-temporal series of confirmed COVID-19 deaths in Europe</title><author>Bucci, A. ; Ippoliti, L. ; Valentini, P. ; Fontanella, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-238c13c679857b86c34f7f2cf25625b564407b1f4c47fc34639f94b7da55bf5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayes nonparametrics</topic><topic>COVID-19</topic><topic>Dynamic linear models</topic><topic>Model-based clustering</topic><topic>Spatio-temporal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bucci, A.</creatorcontrib><creatorcontrib>Ippoliti, L.</creatorcontrib><creatorcontrib>Valentini, P.</creatorcontrib><creatorcontrib>Fontanella, S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Spatial statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bucci, A.</au><au>Ippoliti, L.</au><au>Valentini, P.</au><au>Fontanella, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering spatio-temporal series of confirmed COVID-19 deaths in Europe</atitle><jtitle>Spatial statistics</jtitle><addtitle>Spat Stat</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>49</volume><spage>100543</spage><epage>100543</epage><pages>100543-100543</pages><artnum>100543</artnum><issn>2211-6753</issn><eissn>2211-6753</eissn><abstract>The impact of the COVID-19 pandemic varied significantly across different countries, with important consequences in the definition of control and response strategies. In this work, to investigate the heterogeneity of this crisis, we analyse the spatial patterns of deaths attributed to COVID-19 in several European countries. To this end, we propose a Bayesian nonparametric approach, based on mixture of Gaussian processes coupled with Dirichlet process, to group the COVID-19 mortality curves. The model provides a flexible framework for the analysis of time series data, allowing the inclusion in the clustering procedure of different features of the series, such as spatial correlations, time varying parameters and measurement errors. We evaluate the proposed methodology on the death counts recorded at NUTS-2 regional level for several European countries in the period from March 2020 to February 2021.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>34631400</pmid><doi>10.1016/j.spasta.2021.100543</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9872-9761</orcidid><orcidid>https://orcid.org/0000-0003-2335-746X</orcidid><orcidid>https://orcid.org/0000-0003-1681-9873</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-6753 |
ispartof | Spatial statistics, 2022-06, Vol.49, p.100543-100543, Article 100543 |
issn | 2211-6753 2211-6753 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8493647 |
source | Alma/SFX Local Collection |
subjects | Bayes nonparametrics COVID-19 Dynamic linear models Model-based clustering Spatio-temporal analysis |
title | Clustering spatio-temporal series of confirmed COVID-19 deaths in Europe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20spatio-temporal%20series%20of%20confirmed%20COVID-19%20deaths%20in%20Europe&rft.jtitle=Spatial%20statistics&rft.au=Bucci,%20A.&rft.date=2022-06-01&rft.volume=49&rft.spage=100543&rft.epage=100543&rft.pages=100543-100543&rft.artnum=100543&rft.issn=2211-6753&rft.eissn=2211-6753&rft_id=info:doi/10.1016/j.spasta.2021.100543&rft_dat=%3Cproquest_pubme%3E2580959302%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580959302&rft_id=info:pmid/34631400&rft_els_id=S2211675321000531&rfr_iscdi=true |