Structure–Activity Relationships in Nonenzymatic Template‐Directed RNA Synthesis
The template‐directed synthesis of RNA played an important role in the transition from prebiotic chemistry to the beginnings of RNA based life, but the mechanism of RNA copying chemistry is incompletely understood. We measured the kinetics of template copying with a set of primers with modified 3′‐n...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2021-10, Vol.60 (42), p.22925-22932 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22932 |
---|---|
container_issue | 42 |
container_start_page | 22925 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | Giurgiu, Constantin Fang, Ziyuan Aitken, Harry R. M. Kim, Seohyun Chris Pazienza, Lydia Mittal, Shriyaa Szostak, Jack W. |
description | The template‐directed synthesis of RNA played an important role in the transition from prebiotic chemistry to the beginnings of RNA based life, but the mechanism of RNA copying chemistry is incompletely understood. We measured the kinetics of template copying with a set of primers with modified 3′‐nucleotides and determined the crystal structures of these modified nucleotides in the context of a primer/template/substrate‐analog complex. pH‐rate profiles and solvent isotope effects show that deprotonation of the primer 3′‐hydroxyl occurs prior to the rate limiting step, the attack of the alkoxide on the activated phosphate of the incoming nucleotide. The analogs with a 3E ribose conformation show the fastest formation of 3′–5′ phosphodiester bonds. Among those derivatives, the reaction rate is strongly correlated with the electronegativity of the 2′‐substituent. We interpret our results in terms of differences in steric bulk and charge distribution in the ground vs. transition states.
We combine X‐ray crystallography and kinetic measurements of modified nucleic acid constructs to determine the requirements for efficient template copying. The 3E conformation of the furanose rings is preferred in the formation of 3′–5′ phosphodiester bonds. Our findings may explain why RNA is a privileged substrate amongst other plausible candidates. |
doi_str_mv | 10.1002/anie.202109714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8490286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578733097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4684-4813efc04d64488e50c917ac93cb05f4fa3f8c2e4feee062d12a3b96db401f73</originalsourceid><addsrcrecordid>eNqFkctO3DAUhi1UxGVg22UVqRs2GXxL4mwqjSg3aTSVYPaWxznpGCXO1HaowopHQOob9kkwDAy0G1a2fL7z6Rz_CH0meEwwpsfKGhhTTAkuC8K30B7JKElZUbBP8c4ZSwuRkV207_1N5IXA-Q7aZZxTwXi2h-bXwfU69A7-3v-Z6GBuTRiSK2hUMJ31S7PyibHJrLNg74Y2vupkDu0q1mPHw3fjQAeokqvZJLkebFiCN_4Abdeq8XD4co7Q_Ox0fnKRTn-cX55MpqnmueApF4RBrTGvcs6FgAzrkhRKl0wvcFbzWrFaaAq8BgCc04pQxRZlXi04JnXBRujbWrvqFy1UGmxwqpErZ1rlBtkpI_-tWLOUP7tbKXgZvyKPgqMXget-9eCDbI3X0DTKQtd7SbM4WMnxM_r1P_Sm652N20WqEAVjMYBIjdeUdp33DurNMATLp7zkU15yk1ds-PJ-hQ3-GlAEyjXw2zQwfKCTk9nl6Zv8EWLdpbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578733097</pqid></control><display><type>article</type><title>Structure–Activity Relationships in Nonenzymatic Template‐Directed RNA Synthesis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Giurgiu, Constantin ; Fang, Ziyuan ; Aitken, Harry R. M. ; Kim, Seohyun Chris ; Pazienza, Lydia ; Mittal, Shriyaa ; Szostak, Jack W.</creator><creatorcontrib>Giurgiu, Constantin ; Fang, Ziyuan ; Aitken, Harry R. M. ; Kim, Seohyun Chris ; Pazienza, Lydia ; Mittal, Shriyaa ; Szostak, Jack W.</creatorcontrib><description>The template‐directed synthesis of RNA played an important role in the transition from prebiotic chemistry to the beginnings of RNA based life, but the mechanism of RNA copying chemistry is incompletely understood. We measured the kinetics of template copying with a set of primers with modified 3′‐nucleotides and determined the crystal structures of these modified nucleotides in the context of a primer/template/substrate‐analog complex. pH‐rate profiles and solvent isotope effects show that deprotonation of the primer 3′‐hydroxyl occurs prior to the rate limiting step, the attack of the alkoxide on the activated phosphate of the incoming nucleotide. The analogs with a 3E ribose conformation show the fastest formation of 3′–5′ phosphodiester bonds. Among those derivatives, the reaction rate is strongly correlated with the electronegativity of the 2′‐substituent. We interpret our results in terms of differences in steric bulk and charge distribution in the ground vs. transition states.
We combine X‐ray crystallography and kinetic measurements of modified nucleic acid constructs to determine the requirements for efficient template copying. The 3E conformation of the furanose rings is preferred in the formation of 3′–5′ phosphodiester bonds. Our findings may explain why RNA is a privileged substrate amongst other plausible candidates.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202109714</identifier><identifier>PMID: 34428345</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Arabinose - chemistry ; Bonding strength ; Charge distribution ; Conformation ; Copying ; Crystal structure ; Crystallography, X-Ray ; Deuterium Oxide - chemistry ; DNA Primers - metabolism ; Electronegativity ; Imidazoles - chemistry ; Kinetics ; Nucleic Acid Conformation ; Nucleotide analogs ; Nucleotides ; Nucleotides - chemistry ; origins of life ; Phosphodiester bonds ; prebiotic chemistry ; ribonucleosides ; Ribose ; RNA - chemistry ; RNA - metabolism ; RNA replication ; Structure-Activity Relationship ; Substrates ; Synthesis ; Templates, Genetic ; Transcription ; Water - chemistry ; X-ray crystallography</subject><ispartof>Angewandte Chemie International Edition, 2021-10, Vol.60 (42), p.22925-22932</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4684-4813efc04d64488e50c917ac93cb05f4fa3f8c2e4feee062d12a3b96db401f73</citedby><cites>FETCH-LOGICAL-c4684-4813efc04d64488e50c917ac93cb05f4fa3f8c2e4feee062d12a3b96db401f73</cites><orcidid>0000-0003-4131-1203 ; 0000-0003-0145-0110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202109714$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202109714$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34428345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giurgiu, Constantin</creatorcontrib><creatorcontrib>Fang, Ziyuan</creatorcontrib><creatorcontrib>Aitken, Harry R. M.</creatorcontrib><creatorcontrib>Kim, Seohyun Chris</creatorcontrib><creatorcontrib>Pazienza, Lydia</creatorcontrib><creatorcontrib>Mittal, Shriyaa</creatorcontrib><creatorcontrib>Szostak, Jack W.</creatorcontrib><title>Structure–Activity Relationships in Nonenzymatic Template‐Directed RNA Synthesis</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The template‐directed synthesis of RNA played an important role in the transition from prebiotic chemistry to the beginnings of RNA based life, but the mechanism of RNA copying chemistry is incompletely understood. We measured the kinetics of template copying with a set of primers with modified 3′‐nucleotides and determined the crystal structures of these modified nucleotides in the context of a primer/template/substrate‐analog complex. pH‐rate profiles and solvent isotope effects show that deprotonation of the primer 3′‐hydroxyl occurs prior to the rate limiting step, the attack of the alkoxide on the activated phosphate of the incoming nucleotide. The analogs with a 3E ribose conformation show the fastest formation of 3′–5′ phosphodiester bonds. Among those derivatives, the reaction rate is strongly correlated with the electronegativity of the 2′‐substituent. We interpret our results in terms of differences in steric bulk and charge distribution in the ground vs. transition states.
We combine X‐ray crystallography and kinetic measurements of modified nucleic acid constructs to determine the requirements for efficient template copying. The 3E conformation of the furanose rings is preferred in the formation of 3′–5′ phosphodiester bonds. Our findings may explain why RNA is a privileged substrate amongst other plausible candidates.</description><subject>Arabinose - chemistry</subject><subject>Bonding strength</subject><subject>Charge distribution</subject><subject>Conformation</subject><subject>Copying</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Deuterium Oxide - chemistry</subject><subject>DNA Primers - metabolism</subject><subject>Electronegativity</subject><subject>Imidazoles - chemistry</subject><subject>Kinetics</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleotide analogs</subject><subject>Nucleotides</subject><subject>Nucleotides - chemistry</subject><subject>origins of life</subject><subject>Phosphodiester bonds</subject><subject>prebiotic chemistry</subject><subject>ribonucleosides</subject><subject>Ribose</subject><subject>RNA - chemistry</subject><subject>RNA - metabolism</subject><subject>RNA replication</subject><subject>Structure-Activity Relationship</subject><subject>Substrates</subject><subject>Synthesis</subject><subject>Templates, Genetic</subject><subject>Transcription</subject><subject>Water - chemistry</subject><subject>X-ray crystallography</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctO3DAUhi1UxGVg22UVqRs2GXxL4mwqjSg3aTSVYPaWxznpGCXO1HaowopHQOob9kkwDAy0G1a2fL7z6Rz_CH0meEwwpsfKGhhTTAkuC8K30B7JKElZUbBP8c4ZSwuRkV207_1N5IXA-Q7aZZxTwXi2h-bXwfU69A7-3v-Z6GBuTRiSK2hUMJ31S7PyibHJrLNg74Y2vupkDu0q1mPHw3fjQAeokqvZJLkebFiCN_4Abdeq8XD4co7Q_Ox0fnKRTn-cX55MpqnmueApF4RBrTGvcs6FgAzrkhRKl0wvcFbzWrFaaAq8BgCc04pQxRZlXi04JnXBRujbWrvqFy1UGmxwqpErZ1rlBtkpI_-tWLOUP7tbKXgZvyKPgqMXget-9eCDbI3X0DTKQtd7SbM4WMnxM_r1P_Sm652N20WqEAVjMYBIjdeUdp33DurNMATLp7zkU15yk1ds-PJ-hQ3-GlAEyjXw2zQwfKCTk9nl6Zv8EWLdpbw</recordid><startdate>20211011</startdate><enddate>20211011</enddate><creator>Giurgiu, Constantin</creator><creator>Fang, Ziyuan</creator><creator>Aitken, Harry R. M.</creator><creator>Kim, Seohyun Chris</creator><creator>Pazienza, Lydia</creator><creator>Mittal, Shriyaa</creator><creator>Szostak, Jack W.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4131-1203</orcidid><orcidid>https://orcid.org/0000-0003-0145-0110</orcidid></search><sort><creationdate>20211011</creationdate><title>Structure–Activity Relationships in Nonenzymatic Template‐Directed RNA Synthesis</title><author>Giurgiu, Constantin ; Fang, Ziyuan ; Aitken, Harry R. M. ; Kim, Seohyun Chris ; Pazienza, Lydia ; Mittal, Shriyaa ; Szostak, Jack W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4684-4813efc04d64488e50c917ac93cb05f4fa3f8c2e4feee062d12a3b96db401f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arabinose - chemistry</topic><topic>Bonding strength</topic><topic>Charge distribution</topic><topic>Conformation</topic><topic>Copying</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Deuterium Oxide - chemistry</topic><topic>DNA Primers - metabolism</topic><topic>Electronegativity</topic><topic>Imidazoles - chemistry</topic><topic>Kinetics</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleotide analogs</topic><topic>Nucleotides</topic><topic>Nucleotides - chemistry</topic><topic>origins of life</topic><topic>Phosphodiester bonds</topic><topic>prebiotic chemistry</topic><topic>ribonucleosides</topic><topic>Ribose</topic><topic>RNA - chemistry</topic><topic>RNA - metabolism</topic><topic>RNA replication</topic><topic>Structure-Activity Relationship</topic><topic>Substrates</topic><topic>Synthesis</topic><topic>Templates, Genetic</topic><topic>Transcription</topic><topic>Water - chemistry</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giurgiu, Constantin</creatorcontrib><creatorcontrib>Fang, Ziyuan</creatorcontrib><creatorcontrib>Aitken, Harry R. M.</creatorcontrib><creatorcontrib>Kim, Seohyun Chris</creatorcontrib><creatorcontrib>Pazienza, Lydia</creatorcontrib><creatorcontrib>Mittal, Shriyaa</creatorcontrib><creatorcontrib>Szostak, Jack W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giurgiu, Constantin</au><au>Fang, Ziyuan</au><au>Aitken, Harry R. M.</au><au>Kim, Seohyun Chris</au><au>Pazienza, Lydia</au><au>Mittal, Shriyaa</au><au>Szostak, Jack W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure–Activity Relationships in Nonenzymatic Template‐Directed RNA Synthesis</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-10-11</date><risdate>2021</risdate><volume>60</volume><issue>42</issue><spage>22925</spage><epage>22932</epage><pages>22925-22932</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The template‐directed synthesis of RNA played an important role in the transition from prebiotic chemistry to the beginnings of RNA based life, but the mechanism of RNA copying chemistry is incompletely understood. We measured the kinetics of template copying with a set of primers with modified 3′‐nucleotides and determined the crystal structures of these modified nucleotides in the context of a primer/template/substrate‐analog complex. pH‐rate profiles and solvent isotope effects show that deprotonation of the primer 3′‐hydroxyl occurs prior to the rate limiting step, the attack of the alkoxide on the activated phosphate of the incoming nucleotide. The analogs with a 3E ribose conformation show the fastest formation of 3′–5′ phosphodiester bonds. Among those derivatives, the reaction rate is strongly correlated with the electronegativity of the 2′‐substituent. We interpret our results in terms of differences in steric bulk and charge distribution in the ground vs. transition states.
We combine X‐ray crystallography and kinetic measurements of modified nucleic acid constructs to determine the requirements for efficient template copying. The 3E conformation of the furanose rings is preferred in the formation of 3′–5′ phosphodiester bonds. Our findings may explain why RNA is a privileged substrate amongst other plausible candidates.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34428345</pmid><doi>10.1002/anie.202109714</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4131-1203</orcidid><orcidid>https://orcid.org/0000-0003-0145-0110</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-10, Vol.60 (42), p.22925-22932 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8490286 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Arabinose - chemistry Bonding strength Charge distribution Conformation Copying Crystal structure Crystallography, X-Ray Deuterium Oxide - chemistry DNA Primers - metabolism Electronegativity Imidazoles - chemistry Kinetics Nucleic Acid Conformation Nucleotide analogs Nucleotides Nucleotides - chemistry origins of life Phosphodiester bonds prebiotic chemistry ribonucleosides Ribose RNA - chemistry RNA - metabolism RNA replication Structure-Activity Relationship Substrates Synthesis Templates, Genetic Transcription Water - chemistry X-ray crystallography |
title | Structure–Activity Relationships in Nonenzymatic Template‐Directed RNA Synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%E2%80%93Activity%20Relationships%20in%20Nonenzymatic%20Template%E2%80%90Directed%20RNA%20Synthesis&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Giurgiu,%20Constantin&rft.date=2021-10-11&rft.volume=60&rft.issue=42&rft.spage=22925&rft.epage=22932&rft.pages=22925-22932&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202109714&rft_dat=%3Cproquest_pubme%3E2578733097%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578733097&rft_id=info:pmid/34428345&rfr_iscdi=true |