Structure–Activity Relationships in Nonenzymatic Template‐Directed RNA Synthesis

The template‐directed synthesis of RNA played an important role in the transition from prebiotic chemistry to the beginnings of RNA based life, but the mechanism of RNA copying chemistry is incompletely understood. We measured the kinetics of template copying with a set of primers with modified 3′‐n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-10, Vol.60 (42), p.22925-22932
Hauptverfasser: Giurgiu, Constantin, Fang, Ziyuan, Aitken, Harry R. M., Kim, Seohyun Chris, Pazienza, Lydia, Mittal, Shriyaa, Szostak, Jack W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22932
container_issue 42
container_start_page 22925
container_title Angewandte Chemie International Edition
container_volume 60
creator Giurgiu, Constantin
Fang, Ziyuan
Aitken, Harry R. M.
Kim, Seohyun Chris
Pazienza, Lydia
Mittal, Shriyaa
Szostak, Jack W.
description The template‐directed synthesis of RNA played an important role in the transition from prebiotic chemistry to the beginnings of RNA based life, but the mechanism of RNA copying chemistry is incompletely understood. We measured the kinetics of template copying with a set of primers with modified 3′‐nucleotides and determined the crystal structures of these modified nucleotides in the context of a primer/template/substrate‐analog complex. pH‐rate profiles and solvent isotope effects show that deprotonation of the primer 3′‐hydroxyl occurs prior to the rate limiting step, the attack of the alkoxide on the activated phosphate of the incoming nucleotide. The analogs with a 3E ribose conformation show the fastest formation of 3′–5′ phosphodiester bonds. Among those derivatives, the reaction rate is strongly correlated with the electronegativity of the 2′‐substituent. We interpret our results in terms of differences in steric bulk and charge distribution in the ground vs. transition states. We combine X‐ray crystallography and kinetic measurements of modified nucleic acid constructs to determine the requirements for efficient template copying. The 3E conformation of the furanose rings is preferred in the formation of 3′–5′ phosphodiester bonds. Our findings may explain why RNA is a privileged substrate amongst other plausible candidates.
doi_str_mv 10.1002/anie.202109714
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8490286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578733097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4684-4813efc04d64488e50c917ac93cb05f4fa3f8c2e4feee062d12a3b96db401f73</originalsourceid><addsrcrecordid>eNqFkctO3DAUhi1UxGVg22UVqRs2GXxL4mwqjSg3aTSVYPaWxznpGCXO1HaowopHQOob9kkwDAy0G1a2fL7z6Rz_CH0meEwwpsfKGhhTTAkuC8K30B7JKElZUbBP8c4ZSwuRkV207_1N5IXA-Q7aZZxTwXi2h-bXwfU69A7-3v-Z6GBuTRiSK2hUMJ31S7PyibHJrLNg74Y2vupkDu0q1mPHw3fjQAeokqvZJLkebFiCN_4Abdeq8XD4co7Q_Ox0fnKRTn-cX55MpqnmueApF4RBrTGvcs6FgAzrkhRKl0wvcFbzWrFaaAq8BgCc04pQxRZlXi04JnXBRujbWrvqFy1UGmxwqpErZ1rlBtkpI_-tWLOUP7tbKXgZvyKPgqMXget-9eCDbI3X0DTKQtd7SbM4WMnxM_r1P_Sm652N20WqEAVjMYBIjdeUdp33DurNMATLp7zkU15yk1ds-PJ-hQ3-GlAEyjXw2zQwfKCTk9nl6Zv8EWLdpbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578733097</pqid></control><display><type>article</type><title>Structure–Activity Relationships in Nonenzymatic Template‐Directed RNA Synthesis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Giurgiu, Constantin ; Fang, Ziyuan ; Aitken, Harry R. M. ; Kim, Seohyun Chris ; Pazienza, Lydia ; Mittal, Shriyaa ; Szostak, Jack W.</creator><creatorcontrib>Giurgiu, Constantin ; Fang, Ziyuan ; Aitken, Harry R. M. ; Kim, Seohyun Chris ; Pazienza, Lydia ; Mittal, Shriyaa ; Szostak, Jack W.</creatorcontrib><description>The template‐directed synthesis of RNA played an important role in the transition from prebiotic chemistry to the beginnings of RNA based life, but the mechanism of RNA copying chemistry is incompletely understood. We measured the kinetics of template copying with a set of primers with modified 3′‐nucleotides and determined the crystal structures of these modified nucleotides in the context of a primer/template/substrate‐analog complex. pH‐rate profiles and solvent isotope effects show that deprotonation of the primer 3′‐hydroxyl occurs prior to the rate limiting step, the attack of the alkoxide on the activated phosphate of the incoming nucleotide. The analogs with a 3E ribose conformation show the fastest formation of 3′–5′ phosphodiester bonds. Among those derivatives, the reaction rate is strongly correlated with the electronegativity of the 2′‐substituent. We interpret our results in terms of differences in steric bulk and charge distribution in the ground vs. transition states. We combine X‐ray crystallography and kinetic measurements of modified nucleic acid constructs to determine the requirements for efficient template copying. The 3E conformation of the furanose rings is preferred in the formation of 3′–5′ phosphodiester bonds. Our findings may explain why RNA is a privileged substrate amongst other plausible candidates.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202109714</identifier><identifier>PMID: 34428345</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Arabinose - chemistry ; Bonding strength ; Charge distribution ; Conformation ; Copying ; Crystal structure ; Crystallography, X-Ray ; Deuterium Oxide - chemistry ; DNA Primers - metabolism ; Electronegativity ; Imidazoles - chemistry ; Kinetics ; Nucleic Acid Conformation ; Nucleotide analogs ; Nucleotides ; Nucleotides - chemistry ; origins of life ; Phosphodiester bonds ; prebiotic chemistry ; ribonucleosides ; Ribose ; RNA - chemistry ; RNA - metabolism ; RNA replication ; Structure-Activity Relationship ; Substrates ; Synthesis ; Templates, Genetic ; Transcription ; Water - chemistry ; X-ray crystallography</subject><ispartof>Angewandte Chemie International Edition, 2021-10, Vol.60 (42), p.22925-22932</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4684-4813efc04d64488e50c917ac93cb05f4fa3f8c2e4feee062d12a3b96db401f73</citedby><cites>FETCH-LOGICAL-c4684-4813efc04d64488e50c917ac93cb05f4fa3f8c2e4feee062d12a3b96db401f73</cites><orcidid>0000-0003-4131-1203 ; 0000-0003-0145-0110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202109714$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202109714$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34428345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giurgiu, Constantin</creatorcontrib><creatorcontrib>Fang, Ziyuan</creatorcontrib><creatorcontrib>Aitken, Harry R. M.</creatorcontrib><creatorcontrib>Kim, Seohyun Chris</creatorcontrib><creatorcontrib>Pazienza, Lydia</creatorcontrib><creatorcontrib>Mittal, Shriyaa</creatorcontrib><creatorcontrib>Szostak, Jack W.</creatorcontrib><title>Structure–Activity Relationships in Nonenzymatic Template‐Directed RNA Synthesis</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The template‐directed synthesis of RNA played an important role in the transition from prebiotic chemistry to the beginnings of RNA based life, but the mechanism of RNA copying chemistry is incompletely understood. We measured the kinetics of template copying with a set of primers with modified 3′‐nucleotides and determined the crystal structures of these modified nucleotides in the context of a primer/template/substrate‐analog complex. pH‐rate profiles and solvent isotope effects show that deprotonation of the primer 3′‐hydroxyl occurs prior to the rate limiting step, the attack of the alkoxide on the activated phosphate of the incoming nucleotide. The analogs with a 3E ribose conformation show the fastest formation of 3′–5′ phosphodiester bonds. Among those derivatives, the reaction rate is strongly correlated with the electronegativity of the 2′‐substituent. We interpret our results in terms of differences in steric bulk and charge distribution in the ground vs. transition states. We combine X‐ray crystallography and kinetic measurements of modified nucleic acid constructs to determine the requirements for efficient template copying. The 3E conformation of the furanose rings is preferred in the formation of 3′–5′ phosphodiester bonds. Our findings may explain why RNA is a privileged substrate amongst other plausible candidates.</description><subject>Arabinose - chemistry</subject><subject>Bonding strength</subject><subject>Charge distribution</subject><subject>Conformation</subject><subject>Copying</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Deuterium Oxide - chemistry</subject><subject>DNA Primers - metabolism</subject><subject>Electronegativity</subject><subject>Imidazoles - chemistry</subject><subject>Kinetics</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleotide analogs</subject><subject>Nucleotides</subject><subject>Nucleotides - chemistry</subject><subject>origins of life</subject><subject>Phosphodiester bonds</subject><subject>prebiotic chemistry</subject><subject>ribonucleosides</subject><subject>Ribose</subject><subject>RNA - chemistry</subject><subject>RNA - metabolism</subject><subject>RNA replication</subject><subject>Structure-Activity Relationship</subject><subject>Substrates</subject><subject>Synthesis</subject><subject>Templates, Genetic</subject><subject>Transcription</subject><subject>Water - chemistry</subject><subject>X-ray crystallography</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctO3DAUhi1UxGVg22UVqRs2GXxL4mwqjSg3aTSVYPaWxznpGCXO1HaowopHQOob9kkwDAy0G1a2fL7z6Rz_CH0meEwwpsfKGhhTTAkuC8K30B7JKElZUbBP8c4ZSwuRkV207_1N5IXA-Q7aZZxTwXi2h-bXwfU69A7-3v-Z6GBuTRiSK2hUMJ31S7PyibHJrLNg74Y2vupkDu0q1mPHw3fjQAeokqvZJLkebFiCN_4Abdeq8XD4co7Q_Ox0fnKRTn-cX55MpqnmueApF4RBrTGvcs6FgAzrkhRKl0wvcFbzWrFaaAq8BgCc04pQxRZlXi04JnXBRujbWrvqFy1UGmxwqpErZ1rlBtkpI_-tWLOUP7tbKXgZvyKPgqMXget-9eCDbI3X0DTKQtd7SbM4WMnxM_r1P_Sm652N20WqEAVjMYBIjdeUdp33DurNMATLp7zkU15yk1ds-PJ-hQ3-GlAEyjXw2zQwfKCTk9nl6Zv8EWLdpbw</recordid><startdate>20211011</startdate><enddate>20211011</enddate><creator>Giurgiu, Constantin</creator><creator>Fang, Ziyuan</creator><creator>Aitken, Harry R. M.</creator><creator>Kim, Seohyun Chris</creator><creator>Pazienza, Lydia</creator><creator>Mittal, Shriyaa</creator><creator>Szostak, Jack W.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4131-1203</orcidid><orcidid>https://orcid.org/0000-0003-0145-0110</orcidid></search><sort><creationdate>20211011</creationdate><title>Structure–Activity Relationships in Nonenzymatic Template‐Directed RNA Synthesis</title><author>Giurgiu, Constantin ; Fang, Ziyuan ; Aitken, Harry R. M. ; Kim, Seohyun Chris ; Pazienza, Lydia ; Mittal, Shriyaa ; Szostak, Jack W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4684-4813efc04d64488e50c917ac93cb05f4fa3f8c2e4feee062d12a3b96db401f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arabinose - chemistry</topic><topic>Bonding strength</topic><topic>Charge distribution</topic><topic>Conformation</topic><topic>Copying</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Deuterium Oxide - chemistry</topic><topic>DNA Primers - metabolism</topic><topic>Electronegativity</topic><topic>Imidazoles - chemistry</topic><topic>Kinetics</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleotide analogs</topic><topic>Nucleotides</topic><topic>Nucleotides - chemistry</topic><topic>origins of life</topic><topic>Phosphodiester bonds</topic><topic>prebiotic chemistry</topic><topic>ribonucleosides</topic><topic>Ribose</topic><topic>RNA - chemistry</topic><topic>RNA - metabolism</topic><topic>RNA replication</topic><topic>Structure-Activity Relationship</topic><topic>Substrates</topic><topic>Synthesis</topic><topic>Templates, Genetic</topic><topic>Transcription</topic><topic>Water - chemistry</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giurgiu, Constantin</creatorcontrib><creatorcontrib>Fang, Ziyuan</creatorcontrib><creatorcontrib>Aitken, Harry R. M.</creatorcontrib><creatorcontrib>Kim, Seohyun Chris</creatorcontrib><creatorcontrib>Pazienza, Lydia</creatorcontrib><creatorcontrib>Mittal, Shriyaa</creatorcontrib><creatorcontrib>Szostak, Jack W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giurgiu, Constantin</au><au>Fang, Ziyuan</au><au>Aitken, Harry R. M.</au><au>Kim, Seohyun Chris</au><au>Pazienza, Lydia</au><au>Mittal, Shriyaa</au><au>Szostak, Jack W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure–Activity Relationships in Nonenzymatic Template‐Directed RNA Synthesis</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-10-11</date><risdate>2021</risdate><volume>60</volume><issue>42</issue><spage>22925</spage><epage>22932</epage><pages>22925-22932</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The template‐directed synthesis of RNA played an important role in the transition from prebiotic chemistry to the beginnings of RNA based life, but the mechanism of RNA copying chemistry is incompletely understood. We measured the kinetics of template copying with a set of primers with modified 3′‐nucleotides and determined the crystal structures of these modified nucleotides in the context of a primer/template/substrate‐analog complex. pH‐rate profiles and solvent isotope effects show that deprotonation of the primer 3′‐hydroxyl occurs prior to the rate limiting step, the attack of the alkoxide on the activated phosphate of the incoming nucleotide. The analogs with a 3E ribose conformation show the fastest formation of 3′–5′ phosphodiester bonds. Among those derivatives, the reaction rate is strongly correlated with the electronegativity of the 2′‐substituent. We interpret our results in terms of differences in steric bulk and charge distribution in the ground vs. transition states. We combine X‐ray crystallography and kinetic measurements of modified nucleic acid constructs to determine the requirements for efficient template copying. The 3E conformation of the furanose rings is preferred in the formation of 3′–5′ phosphodiester bonds. Our findings may explain why RNA is a privileged substrate amongst other plausible candidates.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34428345</pmid><doi>10.1002/anie.202109714</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4131-1203</orcidid><orcidid>https://orcid.org/0000-0003-0145-0110</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2021-10, Vol.60 (42), p.22925-22932
issn 1433-7851
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8490286
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Arabinose - chemistry
Bonding strength
Charge distribution
Conformation
Copying
Crystal structure
Crystallography, X-Ray
Deuterium Oxide - chemistry
DNA Primers - metabolism
Electronegativity
Imidazoles - chemistry
Kinetics
Nucleic Acid Conformation
Nucleotide analogs
Nucleotides
Nucleotides - chemistry
origins of life
Phosphodiester bonds
prebiotic chemistry
ribonucleosides
Ribose
RNA - chemistry
RNA - metabolism
RNA replication
Structure-Activity Relationship
Substrates
Synthesis
Templates, Genetic
Transcription
Water - chemistry
X-ray crystallography
title Structure–Activity Relationships in Nonenzymatic Template‐Directed RNA Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%E2%80%93Activity%20Relationships%20in%20Nonenzymatic%20Template%E2%80%90Directed%20RNA%20Synthesis&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Giurgiu,%20Constantin&rft.date=2021-10-11&rft.volume=60&rft.issue=42&rft.spage=22925&rft.epage=22932&rft.pages=22925-22932&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202109714&rft_dat=%3Cproquest_pubme%3E2578733097%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578733097&rft_id=info:pmid/34428345&rfr_iscdi=true