High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy

Multiphoton microscopy has become a powerful tool with which to visualize the morphology and function of neural cells and circuits in the intact mammalian brain. However, tissue scattering, optical aberrations and motion artifacts degrade the imaging performance at depth. Here we describe a minimall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2021-10, Vol.18 (10), p.1253-1258
Hauptverfasser: Streich, Lina, Boffi, Juan Carlos, Wang, Ling, Alhalaseh, Khaleel, Barbieri, Matteo, Rehm, Ronja, Deivasigamani, Senthilkumar, Gross, Cornelius T., Agarwal, Amit, Prevedel, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1258
container_issue 10
container_start_page 1253
container_title Nature methods
container_volume 18
creator Streich, Lina
Boffi, Juan Carlos
Wang, Ling
Alhalaseh, Khaleel
Barbieri, Matteo
Rehm, Ronja
Deivasigamani, Senthilkumar
Gross, Cornelius T.
Agarwal, Amit
Prevedel, Robert
description Multiphoton microscopy has become a powerful tool with which to visualize the morphology and function of neural cells and circuits in the intact mammalian brain. However, tissue scattering, optical aberrations and motion artifacts degrade the imaging performance at depth. Here we describe a minimally invasive intravital imaging methodology based on three-photon excitation, indirect adaptive optics (AO) and active electrocardiogram gating to advance deep-tissue imaging. Our modal-based, sensorless AO approach is robust to low signal-to-noise ratios as commonly encountered in deep scattering tissues such as the mouse brain, and permits AO correction over large axial fields of view. We demonstrate near-diffraction-limited imaging of deep cortical spines and (sub)cortical dendrites up to a depth of 1.4 mm (the edge of the mouse CA1 hippocampus). In addition, we show applications to deep-layer calcium imaging of astrocytes, including fibrous astrocytes that reside in the highly scattering corpus callosum. Three-photon microscopy in combination with adaptive optics-based aberration correction and ECG-triggered gating allows high-resolution imaging of neurons and astrocytes up to a depth of 1.4 mm in the mouse brain.
doi_str_mv 10.1038/s41592-021-01257-6
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8490155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677885537</galeid><sourcerecordid>A677885537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-6e69482dda5e1a5b54304c189230a35f0dc15f7fdbf60184ec22fffaa2254f683</originalsourceid><addsrcrecordid>eNp9UsFq3TAQNKWhSdP-QA_F0EsvTiRZsuRLIYS2KQRySc9CT1756eEnuZIdyN9nXSdpUkIQSNrV7Kx2mKL4RMkJJbU6zZyKllWE0YpQJmTVvCmOqOCqkpSItw930tLD4n3OO0LqmjPxrjisuWg5RkfF7sL32ypBjsM8-RjKPKXZTnMyQ2lCV7o52CWPYQcwlptkfCj93vQ-9OWcl910Zpz8DZQRD5vLaZsAqnEbJ-Tbe5titnG8_VAcODNk-Hh_Hhe_f3y_Pr-oLq9-_jo_u6xsQ-RUNdC0XLGuMwKoERvBa8ItVS2riamFI52lwknXbVxDqOJgGXPOGcOY4K5R9XHxbeUd580eOgthwmn0mPDX6VZH4_Xzl-C3uo83WvGWUCGQ4Os9QYp_ZsiT3vtsYRhMgDhnjVIrKbnkLUK__AfdxTmhWiuqpUKKJ6jeDKB9cBH72oVUnzVSKoVNJaJOXkDh6gBFjAGcx_yzArYWLArnBO5xRkr04hC9OkSjQ_Rfh-gGiz4_Veex5MESCKhXQMan0EP6N9IrtHfHPMgZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578915759</pqid></control><display><type>article</type><title>High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy</title><source>MEDLINE</source><source>Springer Nature - Connect here FIRST to enable access</source><source>SpringerLink Journals - AutoHoldings</source><creator>Streich, Lina ; Boffi, Juan Carlos ; Wang, Ling ; Alhalaseh, Khaleel ; Barbieri, Matteo ; Rehm, Ronja ; Deivasigamani, Senthilkumar ; Gross, Cornelius T. ; Agarwal, Amit ; Prevedel, Robert</creator><creatorcontrib>Streich, Lina ; Boffi, Juan Carlos ; Wang, Ling ; Alhalaseh, Khaleel ; Barbieri, Matteo ; Rehm, Ronja ; Deivasigamani, Senthilkumar ; Gross, Cornelius T. ; Agarwal, Amit ; Prevedel, Robert</creatorcontrib><description>Multiphoton microscopy has become a powerful tool with which to visualize the morphology and function of neural cells and circuits in the intact mammalian brain. However, tissue scattering, optical aberrations and motion artifacts degrade the imaging performance at depth. Here we describe a minimally invasive intravital imaging methodology based on three-photon excitation, indirect adaptive optics (AO) and active electrocardiogram gating to advance deep-tissue imaging. Our modal-based, sensorless AO approach is robust to low signal-to-noise ratios as commonly encountered in deep scattering tissues such as the mouse brain, and permits AO correction over large axial fields of view. We demonstrate near-diffraction-limited imaging of deep cortical spines and (sub)cortical dendrites up to a depth of 1.4 mm (the edge of the mouse CA1 hippocampus). In addition, we show applications to deep-layer calcium imaging of astrocytes, including fibrous astrocytes that reside in the highly scattering corpus callosum. Three-photon microscopy in combination with adaptive optics-based aberration correction and ECG-triggered gating allows high-resolution imaging of neurons and astrocytes up to a depth of 1.4 mm in the mouse brain.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-021-01257-6</identifier><identifier>PMID: 34594033</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/245/2225 ; 631/1647/328/2057 ; 631/1647/328/2235 ; 631/378/2596 ; Adaptive optics ; Animals ; Astrocytes ; Astrocytes - metabolism ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Brain ; Brain research ; Calcium imaging ; Calcium Signaling ; Corpus callosum ; Cytology ; Dendritic spines ; EKG ; Electrocardiography ; Female ; Gating ; Green Fluorescent Proteins ; High resolution ; Image Processing, Computer-Assisted - methods ; Image resolution ; Laser scanning microscopy ; Life Sciences ; Male ; Methods ; Mice ; Mice, Transgenic ; Microscopy ; Microscopy, Fluorescence, Multiphoton - methods ; Morphology ; Neuroimaging ; Neuroimaging - methods ; Neurophysiology ; Optics ; Photons ; Proteomics ; Scattering ; Software ; Structure-function relationships ; Thy-1 Antigens</subject><ispartof>Nature methods, 2021-10, Vol.18 (10), p.1253-1258</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-6e69482dda5e1a5b54304c189230a35f0dc15f7fdbf60184ec22fffaa2254f683</citedby><cites>FETCH-LOGICAL-c607t-6e69482dda5e1a5b54304c189230a35f0dc15f7fdbf60184ec22fffaa2254f683</cites><orcidid>0000-0003-3366-4703 ; 0000-0002-7225-2878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-021-01257-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-021-01257-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34594033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Streich, Lina</creatorcontrib><creatorcontrib>Boffi, Juan Carlos</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Alhalaseh, Khaleel</creatorcontrib><creatorcontrib>Barbieri, Matteo</creatorcontrib><creatorcontrib>Rehm, Ronja</creatorcontrib><creatorcontrib>Deivasigamani, Senthilkumar</creatorcontrib><creatorcontrib>Gross, Cornelius T.</creatorcontrib><creatorcontrib>Agarwal, Amit</creatorcontrib><creatorcontrib>Prevedel, Robert</creatorcontrib><title>High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Multiphoton microscopy has become a powerful tool with which to visualize the morphology and function of neural cells and circuits in the intact mammalian brain. However, tissue scattering, optical aberrations and motion artifacts degrade the imaging performance at depth. Here we describe a minimally invasive intravital imaging methodology based on three-photon excitation, indirect adaptive optics (AO) and active electrocardiogram gating to advance deep-tissue imaging. Our modal-based, sensorless AO approach is robust to low signal-to-noise ratios as commonly encountered in deep scattering tissues such as the mouse brain, and permits AO correction over large axial fields of view. We demonstrate near-diffraction-limited imaging of deep cortical spines and (sub)cortical dendrites up to a depth of 1.4 mm (the edge of the mouse CA1 hippocampus). In addition, we show applications to deep-layer calcium imaging of astrocytes, including fibrous astrocytes that reside in the highly scattering corpus callosum. Three-photon microscopy in combination with adaptive optics-based aberration correction and ECG-triggered gating allows high-resolution imaging of neurons and astrocytes up to a depth of 1.4 mm in the mouse brain.</description><subject>631/1647/245/2225</subject><subject>631/1647/328/2057</subject><subject>631/1647/328/2235</subject><subject>631/378/2596</subject><subject>Adaptive optics</subject><subject>Animals</subject><subject>Astrocytes</subject><subject>Astrocytes - metabolism</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Brain</subject><subject>Brain research</subject><subject>Calcium imaging</subject><subject>Calcium Signaling</subject><subject>Corpus callosum</subject><subject>Cytology</subject><subject>Dendritic spines</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Female</subject><subject>Gating</subject><subject>Green Fluorescent Proteins</subject><subject>High resolution</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image resolution</subject><subject>Laser scanning microscopy</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence, Multiphoton - methods</subject><subject>Morphology</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Neurophysiology</subject><subject>Optics</subject><subject>Photons</subject><subject>Proteomics</subject><subject>Scattering</subject><subject>Software</subject><subject>Structure-function relationships</subject><subject>Thy-1 Antigens</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UsFq3TAQNKWhSdP-QA_F0EsvTiRZsuRLIYS2KQRySc9CT1756eEnuZIdyN9nXSdpUkIQSNrV7Kx2mKL4RMkJJbU6zZyKllWE0YpQJmTVvCmOqOCqkpSItw930tLD4n3OO0LqmjPxrjisuWg5RkfF7sL32ypBjsM8-RjKPKXZTnMyQ2lCV7o52CWPYQcwlptkfCj93vQ-9OWcl910Zpz8DZQRD5vLaZsAqnEbJ-Tbe5titnG8_VAcODNk-Hh_Hhe_f3y_Pr-oLq9-_jo_u6xsQ-RUNdC0XLGuMwKoERvBa8ItVS2riamFI52lwknXbVxDqOJgGXPOGcOY4K5R9XHxbeUd580eOgthwmn0mPDX6VZH4_Xzl-C3uo83WvGWUCGQ4Os9QYp_ZsiT3vtsYRhMgDhnjVIrKbnkLUK__AfdxTmhWiuqpUKKJ6jeDKB9cBH72oVUnzVSKoVNJaJOXkDh6gBFjAGcx_yzArYWLArnBO5xRkr04hC9OkSjQ_Rfh-gGiz4_Veex5MESCKhXQMan0EP6N9IrtHfHPMgZ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Streich, Lina</creator><creator>Boffi, Juan Carlos</creator><creator>Wang, Ling</creator><creator>Alhalaseh, Khaleel</creator><creator>Barbieri, Matteo</creator><creator>Rehm, Ronja</creator><creator>Deivasigamani, Senthilkumar</creator><creator>Gross, Cornelius T.</creator><creator>Agarwal, Amit</creator><creator>Prevedel, Robert</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3366-4703</orcidid><orcidid>https://orcid.org/0000-0002-7225-2878</orcidid></search><sort><creationdate>20211001</creationdate><title>High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy</title><author>Streich, Lina ; Boffi, Juan Carlos ; Wang, Ling ; Alhalaseh, Khaleel ; Barbieri, Matteo ; Rehm, Ronja ; Deivasigamani, Senthilkumar ; Gross, Cornelius T. ; Agarwal, Amit ; Prevedel, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-6e69482dda5e1a5b54304c189230a35f0dc15f7fdbf60184ec22fffaa2254f683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/1647/245/2225</topic><topic>631/1647/328/2057</topic><topic>631/1647/328/2235</topic><topic>631/378/2596</topic><topic>Adaptive optics</topic><topic>Animals</topic><topic>Astrocytes</topic><topic>Astrocytes - metabolism</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Brain</topic><topic>Brain research</topic><topic>Calcium imaging</topic><topic>Calcium Signaling</topic><topic>Corpus callosum</topic><topic>Cytology</topic><topic>Dendritic spines</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Female</topic><topic>Gating</topic><topic>Green Fluorescent Proteins</topic><topic>High resolution</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image resolution</topic><topic>Laser scanning microscopy</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence, Multiphoton - methods</topic><topic>Morphology</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Neurophysiology</topic><topic>Optics</topic><topic>Photons</topic><topic>Proteomics</topic><topic>Scattering</topic><topic>Software</topic><topic>Structure-function relationships</topic><topic>Thy-1 Antigens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Streich, Lina</creatorcontrib><creatorcontrib>Boffi, Juan Carlos</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Alhalaseh, Khaleel</creatorcontrib><creatorcontrib>Barbieri, Matteo</creatorcontrib><creatorcontrib>Rehm, Ronja</creatorcontrib><creatorcontrib>Deivasigamani, Senthilkumar</creatorcontrib><creatorcontrib>Gross, Cornelius T.</creatorcontrib><creatorcontrib>Agarwal, Amit</creatorcontrib><creatorcontrib>Prevedel, Robert</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Streich, Lina</au><au>Boffi, Juan Carlos</au><au>Wang, Ling</au><au>Alhalaseh, Khaleel</au><au>Barbieri, Matteo</au><au>Rehm, Ronja</au><au>Deivasigamani, Senthilkumar</au><au>Gross, Cornelius T.</au><au>Agarwal, Amit</au><au>Prevedel, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>18</volume><issue>10</issue><spage>1253</spage><epage>1258</epage><pages>1253-1258</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Multiphoton microscopy has become a powerful tool with which to visualize the morphology and function of neural cells and circuits in the intact mammalian brain. However, tissue scattering, optical aberrations and motion artifacts degrade the imaging performance at depth. Here we describe a minimally invasive intravital imaging methodology based on three-photon excitation, indirect adaptive optics (AO) and active electrocardiogram gating to advance deep-tissue imaging. Our modal-based, sensorless AO approach is robust to low signal-to-noise ratios as commonly encountered in deep scattering tissues such as the mouse brain, and permits AO correction over large axial fields of view. We demonstrate near-diffraction-limited imaging of deep cortical spines and (sub)cortical dendrites up to a depth of 1.4 mm (the edge of the mouse CA1 hippocampus). In addition, we show applications to deep-layer calcium imaging of astrocytes, including fibrous astrocytes that reside in the highly scattering corpus callosum. Three-photon microscopy in combination with adaptive optics-based aberration correction and ECG-triggered gating allows high-resolution imaging of neurons and astrocytes up to a depth of 1.4 mm in the mouse brain.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>34594033</pmid><doi>10.1038/s41592-021-01257-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3366-4703</orcidid><orcidid>https://orcid.org/0000-0002-7225-2878</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2021-10, Vol.18 (10), p.1253-1258
issn 1548-7091
1548-7105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8490155
source MEDLINE; Springer Nature - Connect here FIRST to enable access; SpringerLink Journals - AutoHoldings
subjects 631/1647/245/2225
631/1647/328/2057
631/1647/328/2235
631/378/2596
Adaptive optics
Animals
Astrocytes
Astrocytes - metabolism
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Brain
Brain research
Calcium imaging
Calcium Signaling
Corpus callosum
Cytology
Dendritic spines
EKG
Electrocardiography
Female
Gating
Green Fluorescent Proteins
High resolution
Image Processing, Computer-Assisted - methods
Image resolution
Laser scanning microscopy
Life Sciences
Male
Methods
Mice
Mice, Transgenic
Microscopy
Microscopy, Fluorescence, Multiphoton - methods
Morphology
Neuroimaging
Neuroimaging - methods
Neurophysiology
Optics
Photons
Proteomics
Scattering
Software
Structure-function relationships
Thy-1 Antigens
title High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20structural%20and%20functional%20deep%20brain%20imaging%20using%20adaptive%20optics%20three-photon%20microscopy&rft.jtitle=Nature%20methods&rft.au=Streich,%20Lina&rft.date=2021-10-01&rft.volume=18&rft.issue=10&rft.spage=1253&rft.epage=1258&rft.pages=1253-1258&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-021-01257-6&rft_dat=%3Cgale_pubme%3EA677885537%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578915759&rft_id=info:pmid/34594033&rft_galeid=A677885537&rfr_iscdi=true