Influence of “protective” symbionts throughout the different steps of an aphid–parasitoid interaction

Abstract Microbial associates are widespread in insects, some conferring a protection to their hosts against natural enemies like parasitoids. These protective symbionts may affect the infection success of the parasitoid by modifying behavioral defenses of their hosts, the development success of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current Zoology 2021-08, Vol.67 (4), p.441-453
Hauptverfasser: Sochard, Corentin, Bellec, Laura, Simon, Jean-Christophe, Outreman, Yannick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 453
container_issue 4
container_start_page 441
container_title Current Zoology
container_volume 67
creator Sochard, Corentin
Bellec, Laura
Simon, Jean-Christophe
Outreman, Yannick
description Abstract Microbial associates are widespread in insects, some conferring a protection to their hosts against natural enemies like parasitoids. These protective symbionts may affect the infection success of the parasitoid by modifying behavioral defenses of their hosts, the development success of the parasitoid by conferring a resistance against it or by altering life-history traits of the emerging parasitoids. Here, we assessed the effects of different protective bacterial symbionts on the entire sequence of the host-parasitoid interaction (i.e., from parasitoid attack to offspring emergence) between the pea aphid, Acyrthosiphon pisum, and its main parasitoid, Aphidius ervi and their impacts on the life-history traits of the emerging parasitoids. To test whether symbiont-mediated phenotypes were general or specific to particular aphid–symbiont associations, we considered several aphid lineages, each harboring a different strain of either Hamiltonella defensa or Regiella insecticola, two protective symbionts commonly found in aphids. We found that symbiont species and strains had a weak effect on the ability of aphids to defend themselves against the parasitic wasps during the attack and a strong effect on aphid resistance against parasitoid development. While parasitism resistance was mainly determined by symbionts, their effects on host defensive behaviors varied largely from one aphid–symbiont association to another. Also, the symbiotic status of the aphid individuals had no impact on the attack rate of the parasitic wasps, the parasitoid emergence rate from parasitized aphids nor the life-history traits of the emerging parasitoids. Overall, no correlations between symbiont effects on the different stages of the host–parasitoid interaction was observed, suggesting no trade-offs or positive associations between symbiont-mediated phenotypes. Our study highlights the need to consider various sequences of the host-parasitoid interaction to better assess the outcomes of protective symbioses and understand the ecological and evolutionary dynamics of insect–symbiont associations.
doi_str_mv 10.1093/cz/zoaa053
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8489026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A767341115</galeid><oup_id>10.1093/cz/zoaa053</oup_id><sourcerecordid>A767341115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-14b348fb8d9f4c8463a39c660d6af726170208b1fd351cc3f512837af75778183</originalsourceid><addsrcrecordid>eNp9ks-KFDEQxhtR3HX14hM0iOAKs5t00kn6sjAs6g4MCP45h3Q6mc7anbRJenDnNO_gVV9unsQ0M6iziOSQour3fVUUlWXPIbiAoEKXcnO5cUKAEj3ITgtUkVnFIH74V3ySPQnhFgBCcAUfZycIE0gqDE-zLwuru1FZqXKn8932x-BdVDKatdptf-bhrq-NszHksfVuXLVujClUeWO0Vl7ZmIeohjCJhc3F0Jpmt_0-CC-Cic40ubFReZEMnX2aPdKiC-rZ4T_LPr998-n6ZrZ8_25xPV_OJKYsziCuEWa6Zk2lsWSYIIEqSQhoiNC0IJCCArAa6gaVUEqkS1gwRFOtpJRBhs6yq73vMNa9amSa0ouOD970wt9xJww_rljT8pVbc4ZZBQqSDM73Bu092c18yaccQBAjyKo1TOyrQzPvvo4qRN6bIFXXCavcGHhRMjB5YprQF_fQWzd6m1aRKMqKxADwh1qJTnFjtUszysmUzymhCEMIy0Rd_INKr1G9kc4qbVL-SHB-JEhMVN_iSowh8MXHD8fs6z0rvQvBK_17CRDw6eS43PDDySX45R524_A_7hcGu9ap</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578234700</pqid></control><display><type>article</type><title>Influence of “protective” symbionts throughout the different steps of an aphid–parasitoid interaction</title><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sochard, Corentin ; Bellec, Laura ; Simon, Jean-Christophe ; Outreman, Yannick</creator><contributor>Zélé, Flore</contributor><creatorcontrib>Sochard, Corentin ; Bellec, Laura ; Simon, Jean-Christophe ; Outreman, Yannick ; Zélé, Flore</creatorcontrib><description>Abstract Microbial associates are widespread in insects, some conferring a protection to their hosts against natural enemies like parasitoids. These protective symbionts may affect the infection success of the parasitoid by modifying behavioral defenses of their hosts, the development success of the parasitoid by conferring a resistance against it or by altering life-history traits of the emerging parasitoids. Here, we assessed the effects of different protective bacterial symbionts on the entire sequence of the host-parasitoid interaction (i.e., from parasitoid attack to offspring emergence) between the pea aphid, Acyrthosiphon pisum, and its main parasitoid, Aphidius ervi and their impacts on the life-history traits of the emerging parasitoids. To test whether symbiont-mediated phenotypes were general or specific to particular aphid–symbiont associations, we considered several aphid lineages, each harboring a different strain of either Hamiltonella defensa or Regiella insecticola, two protective symbionts commonly found in aphids. We found that symbiont species and strains had a weak effect on the ability of aphids to defend themselves against the parasitic wasps during the attack and a strong effect on aphid resistance against parasitoid development. While parasitism resistance was mainly determined by symbionts, their effects on host defensive behaviors varied largely from one aphid–symbiont association to another. Also, the symbiotic status of the aphid individuals had no impact on the attack rate of the parasitic wasps, the parasitoid emergence rate from parasitized aphids nor the life-history traits of the emerging parasitoids. Overall, no correlations between symbiont effects on the different stages of the host–parasitoid interaction was observed, suggesting no trade-offs or positive associations between symbiont-mediated phenotypes. Our study highlights the need to consider various sequences of the host-parasitoid interaction to better assess the outcomes of protective symbioses and understand the ecological and evolutionary dynamics of insect–symbiont associations.</description><identifier>ISSN: 2396-9814</identifier><identifier>ISSN: 1674-5507</identifier><identifier>EISSN: 2396-9814</identifier><identifier>DOI: 10.1093/cz/zoaa053</identifier><identifier>PMID: 34616941</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Acyrthosiphon pisum ; Animal biology ; Aphididae ; Aphidius ervi ; Defensive behavior ; Ecology, environment ; Environmental aspects ; Hamiltonella defensa ; Host-parasite interactions ; Host-parasite relationships ; Infection ; Insects ; Invertebrate Zoology ; Life history ; Life Sciences ; Microbiology and Parasitology ; Natural enemies ; Parasitism ; Parasitoids ; Parasitology ; Pest resistance ; Phenotypes ; Regiella insecticola ; Symbionts ; Symbiosis ; Zoological research</subject><ispartof>Current Zoology, 2021-08, Vol.67 (4), p.441-453</ispartof><rights>The Author(s) (2020). Published by Oxford University Press on behalf of Editorial Office, Current Zoology. 2020</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><rights>The Author(s) (2020). Published by Oxford University Press on behalf of Editorial Office, Current Zoology.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-14b348fb8d9f4c8463a39c660d6af726170208b1fd351cc3f512837af75778183</citedby><cites>FETCH-LOGICAL-c478t-14b348fb8d9f4c8463a39c660d6af726170208b1fd351cc3f512837af75778183</cites><orcidid>0000-0002-7337-3049 ; 0000-0003-0620-5835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489026/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489026/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://institut-agro-rennes-angers.hal.science/hal-03143189$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Zélé, Flore</contributor><creatorcontrib>Sochard, Corentin</creatorcontrib><creatorcontrib>Bellec, Laura</creatorcontrib><creatorcontrib>Simon, Jean-Christophe</creatorcontrib><creatorcontrib>Outreman, Yannick</creatorcontrib><title>Influence of “protective” symbionts throughout the different steps of an aphid–parasitoid interaction</title><title>Current Zoology</title><description>Abstract Microbial associates are widespread in insects, some conferring a protection to their hosts against natural enemies like parasitoids. These protective symbionts may affect the infection success of the parasitoid by modifying behavioral defenses of their hosts, the development success of the parasitoid by conferring a resistance against it or by altering life-history traits of the emerging parasitoids. Here, we assessed the effects of different protective bacterial symbionts on the entire sequence of the host-parasitoid interaction (i.e., from parasitoid attack to offspring emergence) between the pea aphid, Acyrthosiphon pisum, and its main parasitoid, Aphidius ervi and their impacts on the life-history traits of the emerging parasitoids. To test whether symbiont-mediated phenotypes were general or specific to particular aphid–symbiont associations, we considered several aphid lineages, each harboring a different strain of either Hamiltonella defensa or Regiella insecticola, two protective symbionts commonly found in aphids. We found that symbiont species and strains had a weak effect on the ability of aphids to defend themselves against the parasitic wasps during the attack and a strong effect on aphid resistance against parasitoid development. While parasitism resistance was mainly determined by symbionts, their effects on host defensive behaviors varied largely from one aphid–symbiont association to another. Also, the symbiotic status of the aphid individuals had no impact on the attack rate of the parasitic wasps, the parasitoid emergence rate from parasitized aphids nor the life-history traits of the emerging parasitoids. Overall, no correlations between symbiont effects on the different stages of the host–parasitoid interaction was observed, suggesting no trade-offs or positive associations between symbiont-mediated phenotypes. Our study highlights the need to consider various sequences of the host-parasitoid interaction to better assess the outcomes of protective symbioses and understand the ecological and evolutionary dynamics of insect–symbiont associations.</description><subject>Acyrthosiphon pisum</subject><subject>Animal biology</subject><subject>Aphididae</subject><subject>Aphidius ervi</subject><subject>Defensive behavior</subject><subject>Ecology, environment</subject><subject>Environmental aspects</subject><subject>Hamiltonella defensa</subject><subject>Host-parasite interactions</subject><subject>Host-parasite relationships</subject><subject>Infection</subject><subject>Insects</subject><subject>Invertebrate Zoology</subject><subject>Life history</subject><subject>Life Sciences</subject><subject>Microbiology and Parasitology</subject><subject>Natural enemies</subject><subject>Parasitism</subject><subject>Parasitoids</subject><subject>Parasitology</subject><subject>Pest resistance</subject><subject>Phenotypes</subject><subject>Regiella insecticola</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Zoological research</subject><issn>2396-9814</issn><issn>1674-5507</issn><issn>2396-9814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ks-KFDEQxhtR3HX14hM0iOAKs5t00kn6sjAs6g4MCP45h3Q6mc7anbRJenDnNO_gVV9unsQ0M6iziOSQour3fVUUlWXPIbiAoEKXcnO5cUKAEj3ITgtUkVnFIH74V3ySPQnhFgBCcAUfZycIE0gqDE-zLwuru1FZqXKn8932x-BdVDKatdptf-bhrq-NszHksfVuXLVujClUeWO0Vl7ZmIeohjCJhc3F0Jpmt_0-CC-Cic40ubFReZEMnX2aPdKiC-rZ4T_LPr998-n6ZrZ8_25xPV_OJKYsziCuEWa6Zk2lsWSYIIEqSQhoiNC0IJCCArAa6gaVUEqkS1gwRFOtpJRBhs6yq73vMNa9amSa0ouOD970wt9xJww_rljT8pVbc4ZZBQqSDM73Bu092c18yaccQBAjyKo1TOyrQzPvvo4qRN6bIFXXCavcGHhRMjB5YprQF_fQWzd6m1aRKMqKxADwh1qJTnFjtUszysmUzymhCEMIy0Rd_INKr1G9kc4qbVL-SHB-JEhMVN_iSowh8MXHD8fs6z0rvQvBK_17CRDw6eS43PDDySX45R524_A_7hcGu9ap</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Sochard, Corentin</creator><creator>Bellec, Laura</creator><creator>Simon, Jean-Christophe</creator><creator>Outreman, Yannick</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7337-3049</orcidid><orcidid>https://orcid.org/0000-0003-0620-5835</orcidid></search><sort><creationdate>20210801</creationdate><title>Influence of “protective” symbionts throughout the different steps of an aphid–parasitoid interaction</title><author>Sochard, Corentin ; Bellec, Laura ; Simon, Jean-Christophe ; Outreman, Yannick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-14b348fb8d9f4c8463a39c660d6af726170208b1fd351cc3f512837af75778183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acyrthosiphon pisum</topic><topic>Animal biology</topic><topic>Aphididae</topic><topic>Aphidius ervi</topic><topic>Defensive behavior</topic><topic>Ecology, environment</topic><topic>Environmental aspects</topic><topic>Hamiltonella defensa</topic><topic>Host-parasite interactions</topic><topic>Host-parasite relationships</topic><topic>Infection</topic><topic>Insects</topic><topic>Invertebrate Zoology</topic><topic>Life history</topic><topic>Life Sciences</topic><topic>Microbiology and Parasitology</topic><topic>Natural enemies</topic><topic>Parasitism</topic><topic>Parasitoids</topic><topic>Parasitology</topic><topic>Pest resistance</topic><topic>Phenotypes</topic><topic>Regiella insecticola</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Zoological research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sochard, Corentin</creatorcontrib><creatorcontrib>Bellec, Laura</creatorcontrib><creatorcontrib>Simon, Jean-Christophe</creatorcontrib><creatorcontrib>Outreman, Yannick</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current Zoology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sochard, Corentin</au><au>Bellec, Laura</au><au>Simon, Jean-Christophe</au><au>Outreman, Yannick</au><au>Zélé, Flore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of “protective” symbionts throughout the different steps of an aphid–parasitoid interaction</atitle><jtitle>Current Zoology</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>67</volume><issue>4</issue><spage>441</spage><epage>453</epage><pages>441-453</pages><issn>2396-9814</issn><issn>1674-5507</issn><eissn>2396-9814</eissn><abstract>Abstract Microbial associates are widespread in insects, some conferring a protection to their hosts against natural enemies like parasitoids. These protective symbionts may affect the infection success of the parasitoid by modifying behavioral defenses of their hosts, the development success of the parasitoid by conferring a resistance against it or by altering life-history traits of the emerging parasitoids. Here, we assessed the effects of different protective bacterial symbionts on the entire sequence of the host-parasitoid interaction (i.e., from parasitoid attack to offspring emergence) between the pea aphid, Acyrthosiphon pisum, and its main parasitoid, Aphidius ervi and their impacts on the life-history traits of the emerging parasitoids. To test whether symbiont-mediated phenotypes were general or specific to particular aphid–symbiont associations, we considered several aphid lineages, each harboring a different strain of either Hamiltonella defensa or Regiella insecticola, two protective symbionts commonly found in aphids. We found that symbiont species and strains had a weak effect on the ability of aphids to defend themselves against the parasitic wasps during the attack and a strong effect on aphid resistance against parasitoid development. While parasitism resistance was mainly determined by symbionts, their effects on host defensive behaviors varied largely from one aphid–symbiont association to another. Also, the symbiotic status of the aphid individuals had no impact on the attack rate of the parasitic wasps, the parasitoid emergence rate from parasitized aphids nor the life-history traits of the emerging parasitoids. Overall, no correlations between symbiont effects on the different stages of the host–parasitoid interaction was observed, suggesting no trade-offs or positive associations between symbiont-mediated phenotypes. Our study highlights the need to consider various sequences of the host-parasitoid interaction to better assess the outcomes of protective symbioses and understand the ecological and evolutionary dynamics of insect–symbiont associations.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>34616941</pmid><doi>10.1093/cz/zoaa053</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7337-3049</orcidid><orcidid>https://orcid.org/0000-0003-0620-5835</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2396-9814
ispartof Current Zoology, 2021-08, Vol.67 (4), p.441-453
issn 2396-9814
1674-5507
2396-9814
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8489026
source Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Acyrthosiphon pisum
Animal biology
Aphididae
Aphidius ervi
Defensive behavior
Ecology, environment
Environmental aspects
Hamiltonella defensa
Host-parasite interactions
Host-parasite relationships
Infection
Insects
Invertebrate Zoology
Life history
Life Sciences
Microbiology and Parasitology
Natural enemies
Parasitism
Parasitoids
Parasitology
Pest resistance
Phenotypes
Regiella insecticola
Symbionts
Symbiosis
Zoological research
title Influence of “protective” symbionts throughout the different steps of an aphid–parasitoid interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20%E2%80%9Cprotective%E2%80%9D%20symbionts%20throughout%20the%20different%20steps%20of%20an%20aphid%E2%80%93parasitoid%20interaction&rft.jtitle=Current%20Zoology&rft.au=Sochard,%20Corentin&rft.date=2021-08-01&rft.volume=67&rft.issue=4&rft.spage=441&rft.epage=453&rft.pages=441-453&rft.issn=2396-9814&rft.eissn=2396-9814&rft_id=info:doi/10.1093/cz/zoaa053&rft_dat=%3Cgale_pubme%3EA767341115%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578234700&rft_id=info:pmid/34616941&rft_galeid=A767341115&rft_oup_id=10.1093/cz/zoaa053&rfr_iscdi=true