The Clp1 R140H mutation alters tRNA metabolism and mRNA 3′ processing in mouse models of pontocerebellar hypoplasia

Homozygous mutation of the RNA kinase CLP1 (cleavage factor polyribonucleotide kinase subunit 1) causes pontocerebellar hypoplasia type 10 (PCH10), a pediatric neurodegenerative disease. CLP1 is associated with the transfer RNA (tRNA) splicing endonuclease complex and the cleavage and polyadenylatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-09, Vol.118 (39), p.1-11
Hauptverfasser: Monaghan, Caitlin E., Adamson, Scott I., Kapur, Mridu, Chuang, Jeffrey H., Ackerman, Susan L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 39
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Monaghan, Caitlin E.
Adamson, Scott I.
Kapur, Mridu
Chuang, Jeffrey H.
Ackerman, Susan L.
description Homozygous mutation of the RNA kinase CLP1 (cleavage factor polyribonucleotide kinase subunit 1) causes pontocerebellar hypoplasia type 10 (PCH10), a pediatric neurodegenerative disease. CLP1 is associated with the transfer RNA (tRNA) splicing endonuclease complex and the cleavage and polyadenylation machinery, but its function remains unclear. We generated two mouse models of PCH10: one homozygous for the disease-associated Clp1 mutation, R140H, and one heterozygous for this mutation and a null allele. Bothmodels exhibit loss of lowermotor neurons and neurons of the deep cerebellar nuclei. To explore whether Clp1 mutation impacts tRNA splicing, we profiled the products of intron-containing tRNA genes. While mature tRNAs were expressed at normal levels in mutant mice, numerous other products of intron-containing tRNA genes were dysregulated, with pre-tRNAs, introns, and certain tRNA fragments up-regulated, and other fragments down-regulated. However, the spatiotemporal patterns of dysregulation do not correlate with pathogenicity for most altered tRNA products. To elucidate the effect of Clp1 mutation on precursor messenger RNA (pre-mRNA) cleavage, we analyzed poly(A) site (PAS) usage and gene expression in Clp1R140H/− spinal cord. PAS usage was shifted from proximal to distal sites in the mutant mouse, particularly in short and closely spaced genes. Many such genes were also expressed at lower levels in the Clp1R140H/− mouse, possibly as a result of impaired transcript maturation. These findings are consistent with the hypothesis that select genes are particularly dependent upon CLP1 for proper pre-mRNA cleavage, suggesting that impaired mRNA 3′ processing may contribute to pathogenesis in PCH10.
doi_str_mv 10.1073/pnas.2110730118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8488643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075865</jstor_id><sourcerecordid>27075865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-b0c1e5b12bfeb8080d5ecedc0cc8fd1d8a0317951e98d53d3c21658d9c96a6353</originalsourceid><addsrcrecordid>eNpdkcFq3DAURUVpaKZp110VBN1k4-Q9S7KlTSEMaVMIDYR0LWRZzniwJVeSC9n1m_JJ-ZLaTEhpN5LQO_dKl0vIB4QzhJqdT96ksxLXMyDKV2SDoLCouILXZANQ1oXkJT8mb1PaA4ASEt6QY8YFlxz4hsx3O0e3w4T0Fjlc0XHOJvfBUzNkFxPNt98v6OiyacLQp5Ea39JxvWNPvx_pFIN1KfX-nvaejmFObllbNyQaOjoFn5d5dI0bBhPp7mEK02BSb96Ro84Myb1_3k_Ijy-Xd9ur4vrm67ftxXVheVXlogGLTjRYNp1rJEhohbOutWCt7FpspQGGtRLolGwFa5ktsRKyVVZVpmKCnZDPB99pbsZF6HyOZtBT7EcTH3Qwvf534vudvg-_tORSVpwtBqfPBjH8nF3KeuyTXeN4t6TVpagFq6FWK_rpP3Qf5uiXeCulkCnElTo_UDaGlKLrXj6DoNca9Vqp_lvpovh4UOxTDvEFL5dXhawE-wNCxp7K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579139113</pqid></control><display><type>article</type><title>The Clp1 R140H mutation alters tRNA metabolism and mRNA 3′ processing in mouse models of pontocerebellar hypoplasia</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Monaghan, Caitlin E. ; Adamson, Scott I. ; Kapur, Mridu ; Chuang, Jeffrey H. ; Ackerman, Susan L.</creator><creatorcontrib>Monaghan, Caitlin E. ; Adamson, Scott I. ; Kapur, Mridu ; Chuang, Jeffrey H. ; Ackerman, Susan L.</creatorcontrib><description>Homozygous mutation of the RNA kinase CLP1 (cleavage factor polyribonucleotide kinase subunit 1) causes pontocerebellar hypoplasia type 10 (PCH10), a pediatric neurodegenerative disease. CLP1 is associated with the transfer RNA (tRNA) splicing endonuclease complex and the cleavage and polyadenylation machinery, but its function remains unclear. We generated two mouse models of PCH10: one homozygous for the disease-associated Clp1 mutation, R140H, and one heterozygous for this mutation and a null allele. Bothmodels exhibit loss of lowermotor neurons and neurons of the deep cerebellar nuclei. To explore whether Clp1 mutation impacts tRNA splicing, we profiled the products of intron-containing tRNA genes. While mature tRNAs were expressed at normal levels in mutant mice, numerous other products of intron-containing tRNA genes were dysregulated, with pre-tRNAs, introns, and certain tRNA fragments up-regulated, and other fragments down-regulated. However, the spatiotemporal patterns of dysregulation do not correlate with pathogenicity for most altered tRNA products. To elucidate the effect of Clp1 mutation on precursor messenger RNA (pre-mRNA) cleavage, we analyzed poly(A) site (PAS) usage and gene expression in Clp1R140H/− spinal cord. PAS usage was shifted from proximal to distal sites in the mutant mouse, particularly in short and closely spaced genes. Many such genes were also expressed at lower levels in the Clp1R140H/− mouse, possibly as a result of impaired transcript maturation. These findings are consistent with the hypothesis that select genes are particularly dependent upon CLP1 for proper pre-mRNA cleavage, suggesting that impaired mRNA 3′ processing may contribute to pathogenesis in PCH10.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2110730118</identifier><identifier>PMID: 34548404</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Animal models ; Biological Sciences ; Cerebellum ; Cleavage ; Endonuclease ; Fragments ; Gene expression ; Genes ; Hypoplasia ; Introns ; Kinases ; Motor neurons ; Mutants ; Mutation ; Neurodegenerative diseases ; Neurons ; Pathogenesis ; Pathogenicity ; Pathogens ; Pediatrics ; Polyadenine ; Polyadenylation ; Ribonucleic acid ; RNA ; Spinal cord ; Splicing ; Transcription ; Transfer RNA ; tRNA</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (39), p.1-11</ispartof><rights>Copyright National Academy of Sciences Sep 28, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-b0c1e5b12bfeb8080d5ecedc0cc8fd1d8a0317951e98d53d3c21658d9c96a6353</citedby><cites>FETCH-LOGICAL-c466t-b0c1e5b12bfeb8080d5ecedc0cc8fd1d8a0317951e98d53d3c21658d9c96a6353</cites><orcidid>0000-0002-6740-593X ; 0000-0001-7055-3610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075865$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075865$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids></links><search><creatorcontrib>Monaghan, Caitlin E.</creatorcontrib><creatorcontrib>Adamson, Scott I.</creatorcontrib><creatorcontrib>Kapur, Mridu</creatorcontrib><creatorcontrib>Chuang, Jeffrey H.</creatorcontrib><creatorcontrib>Ackerman, Susan L.</creatorcontrib><title>The Clp1 R140H mutation alters tRNA metabolism and mRNA 3′ processing in mouse models of pontocerebellar hypoplasia</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Homozygous mutation of the RNA kinase CLP1 (cleavage factor polyribonucleotide kinase subunit 1) causes pontocerebellar hypoplasia type 10 (PCH10), a pediatric neurodegenerative disease. CLP1 is associated with the transfer RNA (tRNA) splicing endonuclease complex and the cleavage and polyadenylation machinery, but its function remains unclear. We generated two mouse models of PCH10: one homozygous for the disease-associated Clp1 mutation, R140H, and one heterozygous for this mutation and a null allele. Bothmodels exhibit loss of lowermotor neurons and neurons of the deep cerebellar nuclei. To explore whether Clp1 mutation impacts tRNA splicing, we profiled the products of intron-containing tRNA genes. While mature tRNAs were expressed at normal levels in mutant mice, numerous other products of intron-containing tRNA genes were dysregulated, with pre-tRNAs, introns, and certain tRNA fragments up-regulated, and other fragments down-regulated. However, the spatiotemporal patterns of dysregulation do not correlate with pathogenicity for most altered tRNA products. To elucidate the effect of Clp1 mutation on precursor messenger RNA (pre-mRNA) cleavage, we analyzed poly(A) site (PAS) usage and gene expression in Clp1R140H/− spinal cord. PAS usage was shifted from proximal to distal sites in the mutant mouse, particularly in short and closely spaced genes. Many such genes were also expressed at lower levels in the Clp1R140H/− mouse, possibly as a result of impaired transcript maturation. These findings are consistent with the hypothesis that select genes are particularly dependent upon CLP1 for proper pre-mRNA cleavage, suggesting that impaired mRNA 3′ processing may contribute to pathogenesis in PCH10.</description><subject>Animal models</subject><subject>Biological Sciences</subject><subject>Cerebellum</subject><subject>Cleavage</subject><subject>Endonuclease</subject><subject>Fragments</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Hypoplasia</subject><subject>Introns</subject><subject>Kinases</subject><subject>Motor neurons</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Neurodegenerative diseases</subject><subject>Neurons</subject><subject>Pathogenesis</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>Pediatrics</subject><subject>Polyadenine</subject><subject>Polyadenylation</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Spinal cord</subject><subject>Splicing</subject><subject>Transcription</subject><subject>Transfer RNA</subject><subject>tRNA</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkcFq3DAURUVpaKZp110VBN1k4-Q9S7KlTSEMaVMIDYR0LWRZzniwJVeSC9n1m_JJ-ZLaTEhpN5LQO_dKl0vIB4QzhJqdT96ksxLXMyDKV2SDoLCouILXZANQ1oXkJT8mb1PaA4ASEt6QY8YFlxz4hsx3O0e3w4T0Fjlc0XHOJvfBUzNkFxPNt98v6OiyacLQp5Ea39JxvWNPvx_pFIN1KfX-nvaejmFObllbNyQaOjoFn5d5dI0bBhPp7mEK02BSb96Ro84Myb1_3k_Ijy-Xd9ur4vrm67ftxXVheVXlogGLTjRYNp1rJEhohbOutWCt7FpspQGGtRLolGwFa5ktsRKyVVZVpmKCnZDPB99pbsZF6HyOZtBT7EcTH3Qwvf534vudvg-_tORSVpwtBqfPBjH8nF3KeuyTXeN4t6TVpagFq6FWK_rpP3Qf5uiXeCulkCnElTo_UDaGlKLrXj6DoNca9Vqp_lvpovh4UOxTDvEFL5dXhawE-wNCxp7K</recordid><startdate>20210928</startdate><enddate>20210928</enddate><creator>Monaghan, Caitlin E.</creator><creator>Adamson, Scott I.</creator><creator>Kapur, Mridu</creator><creator>Chuang, Jeffrey H.</creator><creator>Ackerman, Susan L.</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6740-593X</orcidid><orcidid>https://orcid.org/0000-0001-7055-3610</orcidid></search><sort><creationdate>20210928</creationdate><title>The Clp1 R140H mutation alters tRNA metabolism and mRNA 3′ processing in mouse models of pontocerebellar hypoplasia</title><author>Monaghan, Caitlin E. ; Adamson, Scott I. ; Kapur, Mridu ; Chuang, Jeffrey H. ; Ackerman, Susan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-b0c1e5b12bfeb8080d5ecedc0cc8fd1d8a0317951e98d53d3c21658d9c96a6353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Biological Sciences</topic><topic>Cerebellum</topic><topic>Cleavage</topic><topic>Endonuclease</topic><topic>Fragments</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Hypoplasia</topic><topic>Introns</topic><topic>Kinases</topic><topic>Motor neurons</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Neurodegenerative diseases</topic><topic>Neurons</topic><topic>Pathogenesis</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>Pediatrics</topic><topic>Polyadenine</topic><topic>Polyadenylation</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Spinal cord</topic><topic>Splicing</topic><topic>Transcription</topic><topic>Transfer RNA</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monaghan, Caitlin E.</creatorcontrib><creatorcontrib>Adamson, Scott I.</creatorcontrib><creatorcontrib>Kapur, Mridu</creatorcontrib><creatorcontrib>Chuang, Jeffrey H.</creatorcontrib><creatorcontrib>Ackerman, Susan L.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monaghan, Caitlin E.</au><au>Adamson, Scott I.</au><au>Kapur, Mridu</au><au>Chuang, Jeffrey H.</au><au>Ackerman, Susan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Clp1 R140H mutation alters tRNA metabolism and mRNA 3′ processing in mouse models of pontocerebellar hypoplasia</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2021-09-28</date><risdate>2021</risdate><volume>118</volume><issue>39</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Homozygous mutation of the RNA kinase CLP1 (cleavage factor polyribonucleotide kinase subunit 1) causes pontocerebellar hypoplasia type 10 (PCH10), a pediatric neurodegenerative disease. CLP1 is associated with the transfer RNA (tRNA) splicing endonuclease complex and the cleavage and polyadenylation machinery, but its function remains unclear. We generated two mouse models of PCH10: one homozygous for the disease-associated Clp1 mutation, R140H, and one heterozygous for this mutation and a null allele. Bothmodels exhibit loss of lowermotor neurons and neurons of the deep cerebellar nuclei. To explore whether Clp1 mutation impacts tRNA splicing, we profiled the products of intron-containing tRNA genes. While mature tRNAs were expressed at normal levels in mutant mice, numerous other products of intron-containing tRNA genes were dysregulated, with pre-tRNAs, introns, and certain tRNA fragments up-regulated, and other fragments down-regulated. However, the spatiotemporal patterns of dysregulation do not correlate with pathogenicity for most altered tRNA products. To elucidate the effect of Clp1 mutation on precursor messenger RNA (pre-mRNA) cleavage, we analyzed poly(A) site (PAS) usage and gene expression in Clp1R140H/− spinal cord. PAS usage was shifted from proximal to distal sites in the mutant mouse, particularly in short and closely spaced genes. Many such genes were also expressed at lower levels in the Clp1R140H/− mouse, possibly as a result of impaired transcript maturation. These findings are consistent with the hypothesis that select genes are particularly dependent upon CLP1 for proper pre-mRNA cleavage, suggesting that impaired mRNA 3′ processing may contribute to pathogenesis in PCH10.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>34548404</pmid><doi>10.1073/pnas.2110730118</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6740-593X</orcidid><orcidid>https://orcid.org/0000-0001-7055-3610</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (39), p.1-11
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8488643
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animal models
Biological Sciences
Cerebellum
Cleavage
Endonuclease
Fragments
Gene expression
Genes
Hypoplasia
Introns
Kinases
Motor neurons
Mutants
Mutation
Neurodegenerative diseases
Neurons
Pathogenesis
Pathogenicity
Pathogens
Pediatrics
Polyadenine
Polyadenylation
Ribonucleic acid
RNA
Spinal cord
Splicing
Transcription
Transfer RNA
tRNA
title The Clp1 R140H mutation alters tRNA metabolism and mRNA 3′ processing in mouse models of pontocerebellar hypoplasia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Clp1%20R140H%20mutation%20alters%20tRNA%20metabolism%20and%20mRNA%203%E2%80%B2%20processing%20in%20mouse%20models%20of%20pontocerebellar%20hypoplasia&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Monaghan,%20Caitlin%20E.&rft.date=2021-09-28&rft.volume=118&rft.issue=39&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2110730118&rft_dat=%3Cjstor_pubme%3E27075865%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579139113&rft_id=info:pmid/34548404&rft_jstor_id=27075865&rfr_iscdi=true