High-level cognition during story listening is reflected in high-order dynamic correlations in neural activity patterns

Our thoughts arise from coordinated patterns of interactions between brain structures that change with our ongoing experiences. High-order dynamic correlations in neural activity patterns reflect different subgraphs of the brain’s functional connectome that display homologous lower-level dynamic cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-09, Vol.12 (1), p.5728-5728, Article 5728
Hauptverfasser: Owen, Lucy L. W., Chang, Thomas H., Manning, Jeremy R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5728
container_issue 1
container_start_page 5728
container_title Nature communications
container_volume 12
creator Owen, Lucy L. W.
Chang, Thomas H.
Manning, Jeremy R.
description Our thoughts arise from coordinated patterns of interactions between brain structures that change with our ongoing experiences. High-order dynamic correlations in neural activity patterns reflect different subgraphs of the brain’s functional connectome that display homologous lower-level dynamic correlations. Here we test the hypothesis that high-level cognition is reflected in high-order dynamic correlations in brain activity patterns. We develop an approach to estimating high-order dynamic correlations in timeseries data, and we apply the approach to neuroimaging data collected as human participants either listen to a ten-minute story or listen to a temporally scrambled version of the story. We train across-participant pattern classifiers to decode (in held-out data) when in the session each neural activity snapshot was collected. We find that classifiers trained to decode from high-order dynamic correlations yield the best performance on data collected as participants listened to the (unscrambled) story. By contrast, classifiers trained to decode data from scrambled versions of the story yielded the best performance when they were trained using first-order dynamic correlations or non-correlational activity patterns. We suggest that as our thoughts become more complex, they are reflected in higher-order patterns of dynamic network interactions throughout the brain. Coordinated patterns of brain activity reflect cognitive processes. Here the authors use a mathematical framework for describing dynamic patterns in brain networks to show they organize in a fractal-like hierarchy during story listening.
doi_str_mv 10.1038/s41467-021-25876-x
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8484677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f65fac70874b43a6b01d530e02e6692a</doaj_id><sourcerecordid>2577913466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-bd1e47fe6cdddf79534e844b7ef1ed10ed3ccc8e5291541e966e4a43ce84e8be3</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhiMEolXpC3BAlrhwSbFjx04uSKgCWqkSFzhbjj3JeuW1F9tZum-P07Sl5UAujp1vvmQyf1W9JfiCYNp9TIwwLmrckLppO8Hr2xfVaYMZqYlo6Msn9yfVeUpbXC7ak46x19UJZW1PRU9Oq99XdtrUDg7gkA6Tt9kGj8wcrZ9QyiEekbMpg1_2NqEIowOdwSDr0WapDdFARObo1c7q4ogRnFosaUE8zFE5pHS2B5uPaK9yhujTm-rVqFyC8_v1rPr59cuPy6v65vu368vPN7VuGc71YAgwMQLXxphR9C1lUFoYBIwEDMFgqNa6g7bpScsI9JwDU4zqQkE3AD2rrlevCWor99HuVDzKoKy8Owhxkipmqx3Ikbej0gJ3gg2MKj5gYlqKATfAed-o4vq0uvbzsAOjwefS2zPp8yfebuQUDrJjXZmVKIIP94IYfs2QstzZpME55SHMSTat6ITomOgL-v4fdBvm6MuvWqgyOso4L1SzUjqGlMpsHj-GYLnERK4xkSUm8i4m8rYUvXvaxmPJQygKQFcg7ZcYQPz77v9o_wCXE8yB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577913466</pqid></control><display><type>article</type><title>High-level cognition during story listening is reflected in high-order dynamic correlations in neural activity patterns</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Owen, Lucy L. W. ; Chang, Thomas H. ; Manning, Jeremy R.</creator><creatorcontrib>Owen, Lucy L. W. ; Chang, Thomas H. ; Manning, Jeremy R.</creatorcontrib><description>Our thoughts arise from coordinated patterns of interactions between brain structures that change with our ongoing experiences. High-order dynamic correlations in neural activity patterns reflect different subgraphs of the brain’s functional connectome that display homologous lower-level dynamic correlations. Here we test the hypothesis that high-level cognition is reflected in high-order dynamic correlations in brain activity patterns. We develop an approach to estimating high-order dynamic correlations in timeseries data, and we apply the approach to neuroimaging data collected as human participants either listen to a ten-minute story or listen to a temporally scrambled version of the story. We train across-participant pattern classifiers to decode (in held-out data) when in the session each neural activity snapshot was collected. We find that classifiers trained to decode from high-order dynamic correlations yield the best performance on data collected as participants listened to the (unscrambled) story. By contrast, classifiers trained to decode data from scrambled versions of the story yielded the best performance when they were trained using first-order dynamic correlations or non-correlational activity patterns. We suggest that as our thoughts become more complex, they are reflected in higher-order patterns of dynamic network interactions throughout the brain. Coordinated patterns of brain activity reflect cognitive processes. Here the authors use a mathematical framework for describing dynamic patterns in brain networks to show they organize in a fractal-like hierarchy during story listening.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-25876-x</identifier><identifier>PMID: 34593791</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>59 ; 59/36 ; 631/378/116/1925 ; 631/378/2649 ; 631/378/2649/1594 ; Activity patterns ; Auditory Perception - physiology ; Brain ; Brain - diagnostic imaging ; Brain - physiology ; Classifiers ; Cognition ; Cognition &amp; reasoning ; Cognition - physiology ; Cognitive ability ; Connectome ; Correlation ; Datasets as Topic ; Graph theory ; Homology ; Humanities and Social Sciences ; Listening ; Magnetic Resonance Imaging ; Medical imaging ; Models, Neurological ; multidisciplinary ; Nerve Net - physiology ; Neuroimaging ; Neuroimaging - methods ; Science ; Science (multidisciplinary) ; Time Factors</subject><ispartof>Nature communications, 2021-09, Vol.12 (1), p.5728-5728, Article 5728</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-bd1e47fe6cdddf79534e844b7ef1ed10ed3ccc8e5291541e966e4a43ce84e8be3</citedby><cites>FETCH-LOGICAL-c540t-bd1e47fe6cdddf79534e844b7ef1ed10ed3ccc8e5291541e966e4a43ce84e8be3</cites><orcidid>0000-0001-7613-4732 ; 0000-0003-1844-6011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484677/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484677/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34593791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Owen, Lucy L. W.</creatorcontrib><creatorcontrib>Chang, Thomas H.</creatorcontrib><creatorcontrib>Manning, Jeremy R.</creatorcontrib><title>High-level cognition during story listening is reflected in high-order dynamic correlations in neural activity patterns</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Our thoughts arise from coordinated patterns of interactions between brain structures that change with our ongoing experiences. High-order dynamic correlations in neural activity patterns reflect different subgraphs of the brain’s functional connectome that display homologous lower-level dynamic correlations. Here we test the hypothesis that high-level cognition is reflected in high-order dynamic correlations in brain activity patterns. We develop an approach to estimating high-order dynamic correlations in timeseries data, and we apply the approach to neuroimaging data collected as human participants either listen to a ten-minute story or listen to a temporally scrambled version of the story. We train across-participant pattern classifiers to decode (in held-out data) when in the session each neural activity snapshot was collected. We find that classifiers trained to decode from high-order dynamic correlations yield the best performance on data collected as participants listened to the (unscrambled) story. By contrast, classifiers trained to decode data from scrambled versions of the story yielded the best performance when they were trained using first-order dynamic correlations or non-correlational activity patterns. We suggest that as our thoughts become more complex, they are reflected in higher-order patterns of dynamic network interactions throughout the brain. Coordinated patterns of brain activity reflect cognitive processes. Here the authors use a mathematical framework for describing dynamic patterns in brain networks to show they organize in a fractal-like hierarchy during story listening.</description><subject>59</subject><subject>59/36</subject><subject>631/378/116/1925</subject><subject>631/378/2649</subject><subject>631/378/2649/1594</subject><subject>Activity patterns</subject><subject>Auditory Perception - physiology</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>Classifiers</subject><subject>Cognition</subject><subject>Cognition &amp; reasoning</subject><subject>Cognition - physiology</subject><subject>Cognitive ability</subject><subject>Connectome</subject><subject>Correlation</subject><subject>Datasets as Topic</subject><subject>Graph theory</subject><subject>Homology</subject><subject>Humanities and Social Sciences</subject><subject>Listening</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Models, Neurological</subject><subject>multidisciplinary</subject><subject>Nerve Net - physiology</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Time Factors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9ksFu1DAQhiMEolXpC3BAlrhwSbFjx04uSKgCWqkSFzhbjj3JeuW1F9tZum-P07Sl5UAujp1vvmQyf1W9JfiCYNp9TIwwLmrckLppO8Hr2xfVaYMZqYlo6Msn9yfVeUpbXC7ak46x19UJZW1PRU9Oq99XdtrUDg7gkA6Tt9kGj8wcrZ9QyiEekbMpg1_2NqEIowOdwSDr0WapDdFARObo1c7q4ogRnFosaUE8zFE5pHS2B5uPaK9yhujTm-rVqFyC8_v1rPr59cuPy6v65vu368vPN7VuGc71YAgwMQLXxphR9C1lUFoYBIwEDMFgqNa6g7bpScsI9JwDU4zqQkE3AD2rrlevCWor99HuVDzKoKy8Owhxkipmqx3Ikbej0gJ3gg2MKj5gYlqKATfAed-o4vq0uvbzsAOjwefS2zPp8yfebuQUDrJjXZmVKIIP94IYfs2QstzZpME55SHMSTat6ITomOgL-v4fdBvm6MuvWqgyOso4L1SzUjqGlMpsHj-GYLnERK4xkSUm8i4m8rYUvXvaxmPJQygKQFcg7ZcYQPz77v9o_wCXE8yB</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Owen, Lucy L. W.</creator><creator>Chang, Thomas H.</creator><creator>Manning, Jeremy R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7613-4732</orcidid><orcidid>https://orcid.org/0000-0003-1844-6011</orcidid></search><sort><creationdate>20210930</creationdate><title>High-level cognition during story listening is reflected in high-order dynamic correlations in neural activity patterns</title><author>Owen, Lucy L. W. ; Chang, Thomas H. ; Manning, Jeremy R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-bd1e47fe6cdddf79534e844b7ef1ed10ed3ccc8e5291541e966e4a43ce84e8be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>59</topic><topic>59/36</topic><topic>631/378/116/1925</topic><topic>631/378/2649</topic><topic>631/378/2649/1594</topic><topic>Activity patterns</topic><topic>Auditory Perception - physiology</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>Classifiers</topic><topic>Cognition</topic><topic>Cognition &amp; reasoning</topic><topic>Cognition - physiology</topic><topic>Cognitive ability</topic><topic>Connectome</topic><topic>Correlation</topic><topic>Datasets as Topic</topic><topic>Graph theory</topic><topic>Homology</topic><topic>Humanities and Social Sciences</topic><topic>Listening</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Models, Neurological</topic><topic>multidisciplinary</topic><topic>Nerve Net - physiology</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owen, Lucy L. W.</creatorcontrib><creatorcontrib>Chang, Thomas H.</creatorcontrib><creatorcontrib>Manning, Jeremy R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owen, Lucy L. W.</au><au>Chang, Thomas H.</au><au>Manning, Jeremy R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-level cognition during story listening is reflected in high-order dynamic correlations in neural activity patterns</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-09-30</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>5728</spage><epage>5728</epage><pages>5728-5728</pages><artnum>5728</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Our thoughts arise from coordinated patterns of interactions between brain structures that change with our ongoing experiences. High-order dynamic correlations in neural activity patterns reflect different subgraphs of the brain’s functional connectome that display homologous lower-level dynamic correlations. Here we test the hypothesis that high-level cognition is reflected in high-order dynamic correlations in brain activity patterns. We develop an approach to estimating high-order dynamic correlations in timeseries data, and we apply the approach to neuroimaging data collected as human participants either listen to a ten-minute story or listen to a temporally scrambled version of the story. We train across-participant pattern classifiers to decode (in held-out data) when in the session each neural activity snapshot was collected. We find that classifiers trained to decode from high-order dynamic correlations yield the best performance on data collected as participants listened to the (unscrambled) story. By contrast, classifiers trained to decode data from scrambled versions of the story yielded the best performance when they were trained using first-order dynamic correlations or non-correlational activity patterns. We suggest that as our thoughts become more complex, they are reflected in higher-order patterns of dynamic network interactions throughout the brain. Coordinated patterns of brain activity reflect cognitive processes. Here the authors use a mathematical framework for describing dynamic patterns in brain networks to show they organize in a fractal-like hierarchy during story listening.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34593791</pmid><doi>10.1038/s41467-021-25876-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7613-4732</orcidid><orcidid>https://orcid.org/0000-0003-1844-6011</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-09, Vol.12 (1), p.5728-5728, Article 5728
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8484677
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects 59
59/36
631/378/116/1925
631/378/2649
631/378/2649/1594
Activity patterns
Auditory Perception - physiology
Brain
Brain - diagnostic imaging
Brain - physiology
Classifiers
Cognition
Cognition & reasoning
Cognition - physiology
Cognitive ability
Connectome
Correlation
Datasets as Topic
Graph theory
Homology
Humanities and Social Sciences
Listening
Magnetic Resonance Imaging
Medical imaging
Models, Neurological
multidisciplinary
Nerve Net - physiology
Neuroimaging
Neuroimaging - methods
Science
Science (multidisciplinary)
Time Factors
title High-level cognition during story listening is reflected in high-order dynamic correlations in neural activity patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-level%20cognition%20during%20story%20listening%20is%20reflected%20in%20high-order%20dynamic%20correlations%20in%20neural%20activity%20patterns&rft.jtitle=Nature%20communications&rft.au=Owen,%20Lucy%20L.%20W.&rft.date=2021-09-30&rft.volume=12&rft.issue=1&rft.spage=5728&rft.epage=5728&rft.pages=5728-5728&rft.artnum=5728&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-25876-x&rft_dat=%3Cproquest_doaj_%3E2577913466%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577913466&rft_id=info:pmid/34593791&rft_doaj_id=oai_doaj_org_article_f65fac70874b43a6b01d530e02e6692a&rfr_iscdi=true