A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment
Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effect...
Gespeichert in:
Veröffentlicht in: | ACS nano 2021-08, Vol.15 (8), p.13019-13030 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13030 |
---|---|
container_issue | 8 |
container_start_page | 13019 |
container_title | ACS nano |
container_volume | 15 |
creator | Beardo, Albert Knobloch, Joshua L Sendra, Lluc Bafaluy, Javier Frazer, Travis D Chao, Weilun Hernandez-Charpak, Jorge N Kapteyn, Henry C Abad, Begoña Murnane, Margaret M Alvarez, F. Xavier Camacho, Juan |
description | Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effective parameters, such as a size-dependent thermal conductivity. However, recent experiments have qualitatively shown behavior that cannot be modeled in this way. Here, we combine advanced experiment and theory to show that the cooling of 1D- and 2D-confined nanoscale hot spots on silicon can be described using a general hydrodynamic heat transport model, contrary to previous understanding of heat flow in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a subset of geometries, supplying a route for optimizing heat dissipation. |
doi_str_mv | 10.1021/acsnano.1c01946 |
format | Article |
fullrecord | <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8483436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c668541682</sourcerecordid><originalsourceid>FETCH-LOGICAL-a499t-33fa8c5f63538c4b6d40ce52e1cb95431a2c5cc04c62a88d221311e1a6aacc493</originalsourceid><addsrcrecordid>eNp1UU1vEzEQtRCIlsKZq8UVbeuxvY6XA1KVloJUAYdU4mY5s7ONq8aObKei_HqcJqrEgdOMZt578_EYew_iFISEM48l-phOAQUM2rxgxzAo0wlrfr18zns4Ym9KuROin9mZec2OlFbSzmA4Zn_O-RVFyv6e-zjyn5nGgDU8EL-JI-VSWzXEW54mvlhRXjfcIvtYNilXPuW05nDRPVHlRTdPcQqRRv697VRq3mLdZiqfdtSUH59gl783lMOaYn3LXk3-vtC7QzxhN18uF_Ov3fWPq2_z8-vO62GonVKTt9hPRvXKol6aUQukXhLgcui1Ai-xRxQajfTWjlKCAiDwxntEPagT9nmvu9ku1zRiG93OdZu2hc-PLvng_u3EsHK36cFZbdujTBP4sBdoNwVXMFTCFaYYCasDKxXYHehsD8KcSsk0PQ8A4XZeuYNX7uBVY3zcM1rD3aVtju0L_0X_BU9WmC4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment</title><source>ACS Publications</source><creator>Beardo, Albert ; Knobloch, Joshua L ; Sendra, Lluc ; Bafaluy, Javier ; Frazer, Travis D ; Chao, Weilun ; Hernandez-Charpak, Jorge N ; Kapteyn, Henry C ; Abad, Begoña ; Murnane, Margaret M ; Alvarez, F. Xavier ; Camacho, Juan</creator><creatorcontrib>Beardo, Albert ; Knobloch, Joshua L ; Sendra, Lluc ; Bafaluy, Javier ; Frazer, Travis D ; Chao, Weilun ; Hernandez-Charpak, Jorge N ; Kapteyn, Henry C ; Abad, Begoña ; Murnane, Margaret M ; Alvarez, F. Xavier ; Camacho, Juan</creatorcontrib><description>Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effective parameters, such as a size-dependent thermal conductivity. However, recent experiments have qualitatively shown behavior that cannot be modeled in this way. Here, we combine advanced experiment and theory to show that the cooling of 1D- and 2D-confined nanoscale hot spots on silicon can be described using a general hydrodynamic heat transport model, contrary to previous understanding of heat flow in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a subset of geometries, supplying a route for optimizing heat dissipation.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c01946</identifier><identifier>PMID: 34328719</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2021-08, Vol.15 (8), p.13019-13030</ispartof><rights>2021 American Chemical Society</rights><rights>2021 American Chemical Society 2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a499t-33fa8c5f63538c4b6d40ce52e1cb95431a2c5cc04c62a88d221311e1a6aacc493</citedby><cites>FETCH-LOGICAL-a499t-33fa8c5f63538c4b6d40ce52e1cb95431a2c5cc04c62a88d221311e1a6aacc493</cites><orcidid>0000-0002-4086-3746 ; 0000-0001-6746-2144 ; 0000-0002-5162-4230 ; 0000-0002-9752-370X ; 0000-0003-1889-1588 ; 0000000318891588 ; 0000000251624230 ; 0000000167462144 ; 0000000240863746 ; 000000029752370X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c01946$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c01946$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1823186$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beardo, Albert</creatorcontrib><creatorcontrib>Knobloch, Joshua L</creatorcontrib><creatorcontrib>Sendra, Lluc</creatorcontrib><creatorcontrib>Bafaluy, Javier</creatorcontrib><creatorcontrib>Frazer, Travis D</creatorcontrib><creatorcontrib>Chao, Weilun</creatorcontrib><creatorcontrib>Hernandez-Charpak, Jorge N</creatorcontrib><creatorcontrib>Kapteyn, Henry C</creatorcontrib><creatorcontrib>Abad, Begoña</creatorcontrib><creatorcontrib>Murnane, Margaret M</creatorcontrib><creatorcontrib>Alvarez, F. Xavier</creatorcontrib><creatorcontrib>Camacho, Juan</creatorcontrib><title>A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effective parameters, such as a size-dependent thermal conductivity. However, recent experiments have qualitatively shown behavior that cannot be modeled in this way. Here, we combine advanced experiment and theory to show that the cooling of 1D- and 2D-confined nanoscale hot spots on silicon can be described using a general hydrodynamic heat transport model, contrary to previous understanding of heat flow in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a subset of geometries, supplying a route for optimizing heat dissipation.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UU1vEzEQtRCIlsKZq8UVbeuxvY6XA1KVloJUAYdU4mY5s7ONq8aObKei_HqcJqrEgdOMZt578_EYew_iFISEM48l-phOAQUM2rxgxzAo0wlrfr18zns4Ym9KuROin9mZec2OlFbSzmA4Zn_O-RVFyv6e-zjyn5nGgDU8EL-JI-VSWzXEW54mvlhRXjfcIvtYNilXPuW05nDRPVHlRTdPcQqRRv697VRq3mLdZiqfdtSUH59gl783lMOaYn3LXk3-vtC7QzxhN18uF_Ov3fWPq2_z8-vO62GonVKTt9hPRvXKol6aUQukXhLgcui1Ai-xRxQajfTWjlKCAiDwxntEPagT9nmvu9ku1zRiG93OdZu2hc-PLvng_u3EsHK36cFZbdujTBP4sBdoNwVXMFTCFaYYCasDKxXYHehsD8KcSsk0PQ8A4XZeuYNX7uBVY3zcM1rD3aVtju0L_0X_BU9WmC4</recordid><startdate>20210824</startdate><enddate>20210824</enddate><creator>Beardo, Albert</creator><creator>Knobloch, Joshua L</creator><creator>Sendra, Lluc</creator><creator>Bafaluy, Javier</creator><creator>Frazer, Travis D</creator><creator>Chao, Weilun</creator><creator>Hernandez-Charpak, Jorge N</creator><creator>Kapteyn, Henry C</creator><creator>Abad, Begoña</creator><creator>Murnane, Margaret M</creator><creator>Alvarez, F. Xavier</creator><creator>Camacho, Juan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4086-3746</orcidid><orcidid>https://orcid.org/0000-0001-6746-2144</orcidid><orcidid>https://orcid.org/0000-0002-5162-4230</orcidid><orcidid>https://orcid.org/0000-0002-9752-370X</orcidid><orcidid>https://orcid.org/0000-0003-1889-1588</orcidid><orcidid>https://orcid.org/0000000318891588</orcidid><orcidid>https://orcid.org/0000000251624230</orcidid><orcidid>https://orcid.org/0000000167462144</orcidid><orcidid>https://orcid.org/0000000240863746</orcidid><orcidid>https://orcid.org/000000029752370X</orcidid></search><sort><creationdate>20210824</creationdate><title>A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment</title><author>Beardo, Albert ; Knobloch, Joshua L ; Sendra, Lluc ; Bafaluy, Javier ; Frazer, Travis D ; Chao, Weilun ; Hernandez-Charpak, Jorge N ; Kapteyn, Henry C ; Abad, Begoña ; Murnane, Margaret M ; Alvarez, F. Xavier ; Camacho, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a499t-33fa8c5f63538c4b6d40ce52e1cb95431a2c5cc04c62a88d221311e1a6aacc493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beardo, Albert</creatorcontrib><creatorcontrib>Knobloch, Joshua L</creatorcontrib><creatorcontrib>Sendra, Lluc</creatorcontrib><creatorcontrib>Bafaluy, Javier</creatorcontrib><creatorcontrib>Frazer, Travis D</creatorcontrib><creatorcontrib>Chao, Weilun</creatorcontrib><creatorcontrib>Hernandez-Charpak, Jorge N</creatorcontrib><creatorcontrib>Kapteyn, Henry C</creatorcontrib><creatorcontrib>Abad, Begoña</creatorcontrib><creatorcontrib>Murnane, Margaret M</creatorcontrib><creatorcontrib>Alvarez, F. Xavier</creatorcontrib><creatorcontrib>Camacho, Juan</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beardo, Albert</au><au>Knobloch, Joshua L</au><au>Sendra, Lluc</au><au>Bafaluy, Javier</au><au>Frazer, Travis D</au><au>Chao, Weilun</au><au>Hernandez-Charpak, Jorge N</au><au>Kapteyn, Henry C</au><au>Abad, Begoña</au><au>Murnane, Margaret M</au><au>Alvarez, F. Xavier</au><au>Camacho, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-08-24</date><risdate>2021</risdate><volume>15</volume><issue>8</issue><spage>13019</spage><epage>13030</epage><pages>13019-13030</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effective parameters, such as a size-dependent thermal conductivity. However, recent experiments have qualitatively shown behavior that cannot be modeled in this way. Here, we combine advanced experiment and theory to show that the cooling of 1D- and 2D-confined nanoscale hot spots on silicon can be described using a general hydrodynamic heat transport model, contrary to previous understanding of heat flow in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a subset of geometries, supplying a route for optimizing heat dissipation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34328719</pmid><doi>10.1021/acsnano.1c01946</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4086-3746</orcidid><orcidid>https://orcid.org/0000-0001-6746-2144</orcidid><orcidid>https://orcid.org/0000-0002-5162-4230</orcidid><orcidid>https://orcid.org/0000-0002-9752-370X</orcidid><orcidid>https://orcid.org/0000-0003-1889-1588</orcidid><orcidid>https://orcid.org/0000000318891588</orcidid><orcidid>https://orcid.org/0000000251624230</orcidid><orcidid>https://orcid.org/0000000167462144</orcidid><orcidid>https://orcid.org/0000000240863746</orcidid><orcidid>https://orcid.org/000000029752370X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2021-08, Vol.15 (8), p.13019-13030 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8483436 |
source | ACS Publications |
title | A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20and%20Predictive%20Understanding%20of%20Thermal%20Transport%20from%201D-%20and%202D-Confined%20Nanostructures:%20Theory%20and%20Experiment&rft.jtitle=ACS%20nano&rft.au=Beardo,%20Albert&rft.date=2021-08-24&rft.volume=15&rft.issue=8&rft.spage=13019&rft.epage=13030&rft.pages=13019-13030&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c01946&rft_dat=%3Cacs_pubme%3Ec668541682%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34328719&rfr_iscdi=true |