A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment

Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-08, Vol.15 (8), p.13019-13030
Hauptverfasser: Beardo, Albert, Knobloch, Joshua L, Sendra, Lluc, Bafaluy, Javier, Frazer, Travis D, Chao, Weilun, Hernandez-Charpak, Jorge N, Kapteyn, Henry C, Abad, Begoña, Murnane, Margaret M, Alvarez, F. Xavier, Camacho, Juan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13030
container_issue 8
container_start_page 13019
container_title ACS nano
container_volume 15
creator Beardo, Albert
Knobloch, Joshua L
Sendra, Lluc
Bafaluy, Javier
Frazer, Travis D
Chao, Weilun
Hernandez-Charpak, Jorge N
Kapteyn, Henry C
Abad, Begoña
Murnane, Margaret M
Alvarez, F. Xavier
Camacho, Juan
description Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effective parameters, such as a size-dependent thermal conductivity. However, recent experiments have qualitatively shown behavior that cannot be modeled in this way. Here, we combine advanced experiment and theory to show that the cooling of 1D- and 2D-confined nanoscale hot spots on silicon can be described using a general hydrodynamic heat transport model, contrary to previous understanding of heat flow in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a subset of geometries, supplying a route for optimizing heat dissipation.
doi_str_mv 10.1021/acsnano.1c01946
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8483436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c668541682</sourcerecordid><originalsourceid>FETCH-LOGICAL-a499t-33fa8c5f63538c4b6d40ce52e1cb95431a2c5cc04c62a88d221311e1a6aacc493</originalsourceid><addsrcrecordid>eNp1UU1vEzEQtRCIlsKZq8UVbeuxvY6XA1KVloJUAYdU4mY5s7ONq8aObKei_HqcJqrEgdOMZt578_EYew_iFISEM48l-phOAQUM2rxgxzAo0wlrfr18zns4Ym9KuROin9mZec2OlFbSzmA4Zn_O-RVFyv6e-zjyn5nGgDU8EL-JI-VSWzXEW54mvlhRXjfcIvtYNilXPuW05nDRPVHlRTdPcQqRRv697VRq3mLdZiqfdtSUH59gl783lMOaYn3LXk3-vtC7QzxhN18uF_Ov3fWPq2_z8-vO62GonVKTt9hPRvXKol6aUQukXhLgcui1Ai-xRxQajfTWjlKCAiDwxntEPagT9nmvu9ku1zRiG93OdZu2hc-PLvng_u3EsHK36cFZbdujTBP4sBdoNwVXMFTCFaYYCasDKxXYHehsD8KcSsk0PQ8A4XZeuYNX7uBVY3zcM1rD3aVtju0L_0X_BU9WmC4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment</title><source>ACS Publications</source><creator>Beardo, Albert ; Knobloch, Joshua L ; Sendra, Lluc ; Bafaluy, Javier ; Frazer, Travis D ; Chao, Weilun ; Hernandez-Charpak, Jorge N ; Kapteyn, Henry C ; Abad, Begoña ; Murnane, Margaret M ; Alvarez, F. Xavier ; Camacho, Juan</creator><creatorcontrib>Beardo, Albert ; Knobloch, Joshua L ; Sendra, Lluc ; Bafaluy, Javier ; Frazer, Travis D ; Chao, Weilun ; Hernandez-Charpak, Jorge N ; Kapteyn, Henry C ; Abad, Begoña ; Murnane, Margaret M ; Alvarez, F. Xavier ; Camacho, Juan</creatorcontrib><description>Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effective parameters, such as a size-dependent thermal conductivity. However, recent experiments have qualitatively shown behavior that cannot be modeled in this way. Here, we combine advanced experiment and theory to show that the cooling of 1D- and 2D-confined nanoscale hot spots on silicon can be described using a general hydrodynamic heat transport model, contrary to previous understanding of heat flow in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a subset of geometries, supplying a route for optimizing heat dissipation.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c01946</identifier><identifier>PMID: 34328719</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2021-08, Vol.15 (8), p.13019-13030</ispartof><rights>2021 American Chemical Society</rights><rights>2021 American Chemical Society 2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a499t-33fa8c5f63538c4b6d40ce52e1cb95431a2c5cc04c62a88d221311e1a6aacc493</citedby><cites>FETCH-LOGICAL-a499t-33fa8c5f63538c4b6d40ce52e1cb95431a2c5cc04c62a88d221311e1a6aacc493</cites><orcidid>0000-0002-4086-3746 ; 0000-0001-6746-2144 ; 0000-0002-5162-4230 ; 0000-0002-9752-370X ; 0000-0003-1889-1588 ; 0000000318891588 ; 0000000251624230 ; 0000000167462144 ; 0000000240863746 ; 000000029752370X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c01946$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c01946$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1823186$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beardo, Albert</creatorcontrib><creatorcontrib>Knobloch, Joshua L</creatorcontrib><creatorcontrib>Sendra, Lluc</creatorcontrib><creatorcontrib>Bafaluy, Javier</creatorcontrib><creatorcontrib>Frazer, Travis D</creatorcontrib><creatorcontrib>Chao, Weilun</creatorcontrib><creatorcontrib>Hernandez-Charpak, Jorge N</creatorcontrib><creatorcontrib>Kapteyn, Henry C</creatorcontrib><creatorcontrib>Abad, Begoña</creatorcontrib><creatorcontrib>Murnane, Margaret M</creatorcontrib><creatorcontrib>Alvarez, F. Xavier</creatorcontrib><creatorcontrib>Camacho, Juan</creatorcontrib><title>A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effective parameters, such as a size-dependent thermal conductivity. However, recent experiments have qualitatively shown behavior that cannot be modeled in this way. Here, we combine advanced experiment and theory to show that the cooling of 1D- and 2D-confined nanoscale hot spots on silicon can be described using a general hydrodynamic heat transport model, contrary to previous understanding of heat flow in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a subset of geometries, supplying a route for optimizing heat dissipation.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UU1vEzEQtRCIlsKZq8UVbeuxvY6XA1KVloJUAYdU4mY5s7ONq8aObKei_HqcJqrEgdOMZt578_EYew_iFISEM48l-phOAQUM2rxgxzAo0wlrfr18zns4Ym9KuROin9mZec2OlFbSzmA4Zn_O-RVFyv6e-zjyn5nGgDU8EL-JI-VSWzXEW54mvlhRXjfcIvtYNilXPuW05nDRPVHlRTdPcQqRRv697VRq3mLdZiqfdtSUH59gl783lMOaYn3LXk3-vtC7QzxhN18uF_Ov3fWPq2_z8-vO62GonVKTt9hPRvXKol6aUQukXhLgcui1Ai-xRxQajfTWjlKCAiDwxntEPagT9nmvu9ku1zRiG93OdZu2hc-PLvng_u3EsHK36cFZbdujTBP4sBdoNwVXMFTCFaYYCasDKxXYHehsD8KcSsk0PQ8A4XZeuYNX7uBVY3zcM1rD3aVtju0L_0X_BU9WmC4</recordid><startdate>20210824</startdate><enddate>20210824</enddate><creator>Beardo, Albert</creator><creator>Knobloch, Joshua L</creator><creator>Sendra, Lluc</creator><creator>Bafaluy, Javier</creator><creator>Frazer, Travis D</creator><creator>Chao, Weilun</creator><creator>Hernandez-Charpak, Jorge N</creator><creator>Kapteyn, Henry C</creator><creator>Abad, Begoña</creator><creator>Murnane, Margaret M</creator><creator>Alvarez, F. Xavier</creator><creator>Camacho, Juan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4086-3746</orcidid><orcidid>https://orcid.org/0000-0001-6746-2144</orcidid><orcidid>https://orcid.org/0000-0002-5162-4230</orcidid><orcidid>https://orcid.org/0000-0002-9752-370X</orcidid><orcidid>https://orcid.org/0000-0003-1889-1588</orcidid><orcidid>https://orcid.org/0000000318891588</orcidid><orcidid>https://orcid.org/0000000251624230</orcidid><orcidid>https://orcid.org/0000000167462144</orcidid><orcidid>https://orcid.org/0000000240863746</orcidid><orcidid>https://orcid.org/000000029752370X</orcidid></search><sort><creationdate>20210824</creationdate><title>A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment</title><author>Beardo, Albert ; Knobloch, Joshua L ; Sendra, Lluc ; Bafaluy, Javier ; Frazer, Travis D ; Chao, Weilun ; Hernandez-Charpak, Jorge N ; Kapteyn, Henry C ; Abad, Begoña ; Murnane, Margaret M ; Alvarez, F. Xavier ; Camacho, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a499t-33fa8c5f63538c4b6d40ce52e1cb95431a2c5cc04c62a88d221311e1a6aacc493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beardo, Albert</creatorcontrib><creatorcontrib>Knobloch, Joshua L</creatorcontrib><creatorcontrib>Sendra, Lluc</creatorcontrib><creatorcontrib>Bafaluy, Javier</creatorcontrib><creatorcontrib>Frazer, Travis D</creatorcontrib><creatorcontrib>Chao, Weilun</creatorcontrib><creatorcontrib>Hernandez-Charpak, Jorge N</creatorcontrib><creatorcontrib>Kapteyn, Henry C</creatorcontrib><creatorcontrib>Abad, Begoña</creatorcontrib><creatorcontrib>Murnane, Margaret M</creatorcontrib><creatorcontrib>Alvarez, F. Xavier</creatorcontrib><creatorcontrib>Camacho, Juan</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beardo, Albert</au><au>Knobloch, Joshua L</au><au>Sendra, Lluc</au><au>Bafaluy, Javier</au><au>Frazer, Travis D</au><au>Chao, Weilun</au><au>Hernandez-Charpak, Jorge N</au><au>Kapteyn, Henry C</au><au>Abad, Begoña</au><au>Murnane, Margaret M</au><au>Alvarez, F. Xavier</au><au>Camacho, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-08-24</date><risdate>2021</risdate><volume>15</volume><issue>8</issue><spage>13019</spage><epage>13030</epage><pages>13019-13030</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effective parameters, such as a size-dependent thermal conductivity. However, recent experiments have qualitatively shown behavior that cannot be modeled in this way. Here, we combine advanced experiment and theory to show that the cooling of 1D- and 2D-confined nanoscale hot spots on silicon can be described using a general hydrodynamic heat transport model, contrary to previous understanding of heat flow in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a subset of geometries, supplying a route for optimizing heat dissipation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34328719</pmid><doi>10.1021/acsnano.1c01946</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4086-3746</orcidid><orcidid>https://orcid.org/0000-0001-6746-2144</orcidid><orcidid>https://orcid.org/0000-0002-5162-4230</orcidid><orcidid>https://orcid.org/0000-0002-9752-370X</orcidid><orcidid>https://orcid.org/0000-0003-1889-1588</orcidid><orcidid>https://orcid.org/0000000318891588</orcidid><orcidid>https://orcid.org/0000000251624230</orcidid><orcidid>https://orcid.org/0000000167462144</orcidid><orcidid>https://orcid.org/0000000240863746</orcidid><orcidid>https://orcid.org/000000029752370X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-08, Vol.15 (8), p.13019-13030
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8483436
source ACS Publications
title A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20and%20Predictive%20Understanding%20of%20Thermal%20Transport%20from%201D-%20and%202D-Confined%20Nanostructures:%20Theory%20and%20Experiment&rft.jtitle=ACS%20nano&rft.au=Beardo,%20Albert&rft.date=2021-08-24&rft.volume=15&rft.issue=8&rft.spage=13019&rft.epage=13030&rft.pages=13019-13030&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c01946&rft_dat=%3Cacs_pubme%3Ec668541682%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34328719&rfr_iscdi=true