Hybrid Tellurium–Lignin Nanoparticles with Enhanced Antibacterial Properties
The surge of antibiotic-resistant bacteria is leading to the loss of effectiveness of antibiotic treatment, resulting in prolonged infections and even death. Against this healthcare threat, antimicrobial nanoparticles that hamper the evolution of resistance mechanisms are promising alternatives to a...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-04, Vol.13 (13), p.14885-14893 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14893 |
---|---|
container_issue | 13 |
container_start_page | 14885 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Morena, A. Gala Bassegoda, Arnau Hoyo, Javier Tzanov, Tzanko |
description | The surge of antibiotic-resistant bacteria is leading to the loss of effectiveness of antibiotic treatment, resulting in prolonged infections and even death. Against this healthcare threat, antimicrobial nanoparticles that hamper the evolution of resistance mechanisms are promising alternatives to antibiotics. Herein, we used Kraft lignin, a poorly valorized polymer derived from plant biomass, to develop novel hybrid tellurium–lignin nanoparticles (TeLigNPs) as alternative antimicrobial agents. The sonochemically synthesized TeLigNPs are comprised of a lignin matrix with embedded Te clusters, revealing the role of lignin as both a reducing agent and a structural component. The hybrid NPs showed strong bactericidal effects against the Gram-negative Escherichia coli and Pseudomonas aeruginosa, achieving more than 5 log bacteria reduction, while they only slightly inhibited the growth of the Gram-positive Staphylococcus aureus. Exposure of TeLigNPs to human cells did not cause morphological changes or reduction in cell viability. Studies on the antimicrobial mechanism of action demonstrated that the novel TeLigNPs were able to disturb bacterial model membranes and generate reactive oxygen species (ROS) in Gram-negative bacteria. |
doi_str_mv | 10.1021/acsami.0c22301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8480780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504340045</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-6fff7f41b5f193e2b5e1c431dc812e9c3ba5cc11a5387c2a82579dec4fd12fa3</originalsourceid><addsrcrecordid>eNp1kc1KAzEUhYMo1r-tS5mlCK357cxsBCnVCqW66D7cySRtZCZTkxmlO9_BN_RJjLQWXbi6gfudk-QchM4JHhBMyTWoALUdYEUpw2QPHZGc835GBd3fnTnvoeMQnjEeMorFIeoxlgo-zMURmk3WhbdlMtdV1Xnb1Z_vH1O7cNYlM3DNCnxrVaVD8mbbZTJ2S3BKl8mta20BqtXeQpU8-WalI6jDKTowUAV9tp0naH43no8m_enj_cPodtoHTkXbHxpjUsNJIQzJmaaF0ERxRkqVEapzxQoQShECgmWpohD_k-alVtyUhBpgJ-hmY7vqilqXSrvWQyVX3tbg17IBK_9unF3KRfMqM57hNMPR4HJr4JuXTodW1jaomAE43XRBUoE54xhzEdHBBlW-CcFrs7uGYPndgdx0ILcdRMHF78ft8J_QI3C1AaJQPjeddzGq_9y-AJYYlR0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504340045</pqid></control><display><type>article</type><title>Hybrid Tellurium–Lignin Nanoparticles with Enhanced Antibacterial Properties</title><source>ACS Publications</source><creator>Morena, A. Gala ; Bassegoda, Arnau ; Hoyo, Javier ; Tzanov, Tzanko</creator><creatorcontrib>Morena, A. Gala ; Bassegoda, Arnau ; Hoyo, Javier ; Tzanov, Tzanko</creatorcontrib><description>The surge of antibiotic-resistant bacteria is leading to the loss of effectiveness of antibiotic treatment, resulting in prolonged infections and even death. Against this healthcare threat, antimicrobial nanoparticles that hamper the evolution of resistance mechanisms are promising alternatives to antibiotics. Herein, we used Kraft lignin, a poorly valorized polymer derived from plant biomass, to develop novel hybrid tellurium–lignin nanoparticles (TeLigNPs) as alternative antimicrobial agents. The sonochemically synthesized TeLigNPs are comprised of a lignin matrix with embedded Te clusters, revealing the role of lignin as both a reducing agent and a structural component. The hybrid NPs showed strong bactericidal effects against the Gram-negative Escherichia coli and Pseudomonas aeruginosa, achieving more than 5 log bacteria reduction, while they only slightly inhibited the growth of the Gram-positive Staphylococcus aureus. Exposure of TeLigNPs to human cells did not cause morphological changes or reduction in cell viability. Studies on the antimicrobial mechanism of action demonstrated that the novel TeLigNPs were able to disturb bacterial model membranes and generate reactive oxygen species (ROS) in Gram-negative bacteria.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c22301</identifier><identifier>PMID: 33754695</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biological and Medical Applications of Materials and Interfaces</subject><ispartof>ACS applied materials & interfaces, 2021-04, Vol.13 (13), p.14885-14893</ispartof><rights>2021 American Chemical Society</rights><rights>2021 American Chemical Society 2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-6fff7f41b5f193e2b5e1c431dc812e9c3ba5cc11a5387c2a82579dec4fd12fa3</citedby><cites>FETCH-LOGICAL-a425t-6fff7f41b5f193e2b5e1c431dc812e9c3ba5cc11a5387c2a82579dec4fd12fa3</cites><orcidid>0000-0003-4470-8249 ; 0000-0002-9927-2465 ; 0000-0002-8568-1110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c22301$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c22301$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33754695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morena, A. Gala</creatorcontrib><creatorcontrib>Bassegoda, Arnau</creatorcontrib><creatorcontrib>Hoyo, Javier</creatorcontrib><creatorcontrib>Tzanov, Tzanko</creatorcontrib><title>Hybrid Tellurium–Lignin Nanoparticles with Enhanced Antibacterial Properties</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The surge of antibiotic-resistant bacteria is leading to the loss of effectiveness of antibiotic treatment, resulting in prolonged infections and even death. Against this healthcare threat, antimicrobial nanoparticles that hamper the evolution of resistance mechanisms are promising alternatives to antibiotics. Herein, we used Kraft lignin, a poorly valorized polymer derived from plant biomass, to develop novel hybrid tellurium–lignin nanoparticles (TeLigNPs) as alternative antimicrobial agents. The sonochemically synthesized TeLigNPs are comprised of a lignin matrix with embedded Te clusters, revealing the role of lignin as both a reducing agent and a structural component. The hybrid NPs showed strong bactericidal effects against the Gram-negative Escherichia coli and Pseudomonas aeruginosa, achieving more than 5 log bacteria reduction, while they only slightly inhibited the growth of the Gram-positive Staphylococcus aureus. Exposure of TeLigNPs to human cells did not cause morphological changes or reduction in cell viability. Studies on the antimicrobial mechanism of action demonstrated that the novel TeLigNPs were able to disturb bacterial model membranes and generate reactive oxygen species (ROS) in Gram-negative bacteria.</description><subject>Biological and Medical Applications of Materials and Interfaces</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kc1KAzEUhYMo1r-tS5mlCK357cxsBCnVCqW66D7cySRtZCZTkxmlO9_BN_RJjLQWXbi6gfudk-QchM4JHhBMyTWoALUdYEUpw2QPHZGc835GBd3fnTnvoeMQnjEeMorFIeoxlgo-zMURmk3WhbdlMtdV1Xnb1Z_vH1O7cNYlM3DNCnxrVaVD8mbbZTJ2S3BKl8mta20BqtXeQpU8-WalI6jDKTowUAV9tp0naH43no8m_enj_cPodtoHTkXbHxpjUsNJIQzJmaaF0ERxRkqVEapzxQoQShECgmWpohD_k-alVtyUhBpgJ-hmY7vqilqXSrvWQyVX3tbg17IBK_9unF3KRfMqM57hNMPR4HJr4JuXTodW1jaomAE43XRBUoE54xhzEdHBBlW-CcFrs7uGYPndgdx0ILcdRMHF78ft8J_QI3C1AaJQPjeddzGq_9y-AJYYlR0</recordid><startdate>20210407</startdate><enddate>20210407</enddate><creator>Morena, A. Gala</creator><creator>Bassegoda, Arnau</creator><creator>Hoyo, Javier</creator><creator>Tzanov, Tzanko</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4470-8249</orcidid><orcidid>https://orcid.org/0000-0002-9927-2465</orcidid><orcidid>https://orcid.org/0000-0002-8568-1110</orcidid></search><sort><creationdate>20210407</creationdate><title>Hybrid Tellurium–Lignin Nanoparticles with Enhanced Antibacterial Properties</title><author>Morena, A. Gala ; Bassegoda, Arnau ; Hoyo, Javier ; Tzanov, Tzanko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-6fff7f41b5f193e2b5e1c431dc812e9c3ba5cc11a5387c2a82579dec4fd12fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological and Medical Applications of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morena, A. Gala</creatorcontrib><creatorcontrib>Bassegoda, Arnau</creatorcontrib><creatorcontrib>Hoyo, Javier</creatorcontrib><creatorcontrib>Tzanov, Tzanko</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morena, A. Gala</au><au>Bassegoda, Arnau</au><au>Hoyo, Javier</au><au>Tzanov, Tzanko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Tellurium–Lignin Nanoparticles with Enhanced Antibacterial Properties</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-04-07</date><risdate>2021</risdate><volume>13</volume><issue>13</issue><spage>14885</spage><epage>14893</epage><pages>14885-14893</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The surge of antibiotic-resistant bacteria is leading to the loss of effectiveness of antibiotic treatment, resulting in prolonged infections and even death. Against this healthcare threat, antimicrobial nanoparticles that hamper the evolution of resistance mechanisms are promising alternatives to antibiotics. Herein, we used Kraft lignin, a poorly valorized polymer derived from plant biomass, to develop novel hybrid tellurium–lignin nanoparticles (TeLigNPs) as alternative antimicrobial agents. The sonochemically synthesized TeLigNPs are comprised of a lignin matrix with embedded Te clusters, revealing the role of lignin as both a reducing agent and a structural component. The hybrid NPs showed strong bactericidal effects against the Gram-negative Escherichia coli and Pseudomonas aeruginosa, achieving more than 5 log bacteria reduction, while they only slightly inhibited the growth of the Gram-positive Staphylococcus aureus. Exposure of TeLigNPs to human cells did not cause morphological changes or reduction in cell viability. Studies on the antimicrobial mechanism of action demonstrated that the novel TeLigNPs were able to disturb bacterial model membranes and generate reactive oxygen species (ROS) in Gram-negative bacteria.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33754695</pmid><doi>10.1021/acsami.0c22301</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4470-8249</orcidid><orcidid>https://orcid.org/0000-0002-9927-2465</orcidid><orcidid>https://orcid.org/0000-0002-8568-1110</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-04, Vol.13 (13), p.14885-14893 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8480780 |
source | ACS Publications |
subjects | Biological and Medical Applications of Materials and Interfaces |
title | Hybrid Tellurium–Lignin Nanoparticles with Enhanced Antibacterial Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Tellurium%E2%80%93Lignin%20Nanoparticles%20with%20Enhanced%20Antibacterial%20Properties&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Morena,%20A.%20Gala&rft.date=2021-04-07&rft.volume=13&rft.issue=13&rft.spage=14885&rft.epage=14893&rft.pages=14885-14893&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c22301&rft_dat=%3Cproquest_pubme%3E2504340045%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504340045&rft_id=info:pmid/33754695&rfr_iscdi=true |