Improving deconvolution methods in biology through open innovation competitions: an application to the connectivity map
Do machine learning methods improve standard deconvolution techniques for gene expression data? This article uses a unique new dataset combined with an open innovation competition to evaluate a wide range of approaches developed by 294 competitors from 20 countries. The competition's objective...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2021-09, Vol.37 (18), p.2889-2895 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2895 |
---|---|
container_issue | 18 |
container_start_page | 2889 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 37 |
creator | Blasco, Andrea Natoli, Ted Endres, Michael G Sergeev, Rinat A Randazzo, Steven Paik, Jin H Macaluso, N J Maximilian Narayan, Rajiv Lu, Xiaodong Peck, David Lakhani, Karim R Subramanian, Aravind |
description | Do machine learning methods improve standard deconvolution techniques for gene expression data? This article uses a unique new dataset combined with an open innovation competition to evaluate a wide range of approaches developed by 294 competitors from 20 countries. The competition's objective was to address a deconvolution problem critical to analyzing genetic perturbations from the Connectivity Map. The issue consists of separating gene expression of individual genes from raw measurements obtained from gene pairs. We evaluated the outcomes using ground-truth data (direct measurements for single genes) obtained from the same samples.
We find that the top-ranked algorithm, based on random forest regression, beat the other methods in accuracy and reproducibility; more traditional gaussian-mixture methods performed well and tended to be faster, and the best deep learning approach yielded outcomes slightly inferior to the above methods. We anticipate researchers in the field will find the dataset and algorithms developed in this study to be a powerful research tool for benchmarking their deconvolution methods and a resource useful for multiple applications.
The data is freely available at clue.io/data (section Contests) and the software is on GitHub at https://github.com/cmap/gene_deconvolution_challenge.
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btab192 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8479655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509606303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d5783dd8d30926db61b0ad3197e1199f4aba91d4fbc3ae0121c51443a2a8307f3</originalsourceid><addsrcrecordid>eNpVUUtP3DAQtipQef4F5GMvC3acODEHpAq1gITUCz1bE9vZdZV4UtsJ2n9P6C6rcprRfK-RPkKuOLvmTImb1qMPHcYBsjfpps3QclV8IadcyHpVNpwfHXYmTshZSn8YYxWr5FdyIkRTlKoqT8nr0zBGnH1YU-sMhhn7KXsMdHB5gzZRH-iS1eN6S_Mm4rTeUBxdWO4BZ_hHNTiMLvv3Pd1SCBTGsfdmB2ZcdG7hhOBM9rPPWzrAeEGOO-iTu9zPc_L754-X-8fV86-Hp_vvzysjJM8rW9WNsLaxgqlC2lbyloEVXNWOc6W6ElpQ3JZdawQ4xgtuKl6WAgpoBKs7cU7udr7j1A7OGhdyhF6P0Q8QtxrB689I8Bu9xlk3Za1kVS0G3_YGEf9OLmU9-GRc30NwOCVdVExJJgUTC1XuqCZiStF1hxjO9Htr-nNret_aIrz6_8mD7KMm8QZY9J6S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509606303</pqid></control><display><type>article</type><title>Improving deconvolution methods in biology through open innovation competitions: an application to the connectivity map</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Blasco, Andrea ; Natoli, Ted ; Endres, Michael G ; Sergeev, Rinat A ; Randazzo, Steven ; Paik, Jin H ; Macaluso, N J Maximilian ; Narayan, Rajiv ; Lu, Xiaodong ; Peck, David ; Lakhani, Karim R ; Subramanian, Aravind</creator><contributor>Mathelier, Anthony</contributor><creatorcontrib>Blasco, Andrea ; Natoli, Ted ; Endres, Michael G ; Sergeev, Rinat A ; Randazzo, Steven ; Paik, Jin H ; Macaluso, N J Maximilian ; Narayan, Rajiv ; Lu, Xiaodong ; Peck, David ; Lakhani, Karim R ; Subramanian, Aravind ; Mathelier, Anthony</creatorcontrib><description>Do machine learning methods improve standard deconvolution techniques for gene expression data? This article uses a unique new dataset combined with an open innovation competition to evaluate a wide range of approaches developed by 294 competitors from 20 countries. The competition's objective was to address a deconvolution problem critical to analyzing genetic perturbations from the Connectivity Map. The issue consists of separating gene expression of individual genes from raw measurements obtained from gene pairs. We evaluated the outcomes using ground-truth data (direct measurements for single genes) obtained from the same samples.
We find that the top-ranked algorithm, based on random forest regression, beat the other methods in accuracy and reproducibility; more traditional gaussian-mixture methods performed well and tended to be faster, and the best deep learning approach yielded outcomes slightly inferior to the above methods. We anticipate researchers in the field will find the dataset and algorithms developed in this study to be a powerful research tool for benchmarking their deconvolution methods and a resource useful for multiple applications.
The data is freely available at clue.io/data (section Contests) and the software is on GitHub at https://github.com/cmap/gene_deconvolution_challenge.
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btab192</identifier><identifier>PMID: 33824954</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Biology ; Original Papers ; Random Forest ; Reproducibility of Results ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2021-09, Vol.37 (18), p.2889-2895</ispartof><rights>The Author(s) 2021. Published by Oxford University Press.</rights><rights>The Author(s) 2021. Published by Oxford University Press. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-d5783dd8d30926db61b0ad3197e1199f4aba91d4fbc3ae0121c51443a2a8307f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479655/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479655/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33824954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mathelier, Anthony</contributor><creatorcontrib>Blasco, Andrea</creatorcontrib><creatorcontrib>Natoli, Ted</creatorcontrib><creatorcontrib>Endres, Michael G</creatorcontrib><creatorcontrib>Sergeev, Rinat A</creatorcontrib><creatorcontrib>Randazzo, Steven</creatorcontrib><creatorcontrib>Paik, Jin H</creatorcontrib><creatorcontrib>Macaluso, N J Maximilian</creatorcontrib><creatorcontrib>Narayan, Rajiv</creatorcontrib><creatorcontrib>Lu, Xiaodong</creatorcontrib><creatorcontrib>Peck, David</creatorcontrib><creatorcontrib>Lakhani, Karim R</creatorcontrib><creatorcontrib>Subramanian, Aravind</creatorcontrib><title>Improving deconvolution methods in biology through open innovation competitions: an application to the connectivity map</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Do machine learning methods improve standard deconvolution techniques for gene expression data? This article uses a unique new dataset combined with an open innovation competition to evaluate a wide range of approaches developed by 294 competitors from 20 countries. The competition's objective was to address a deconvolution problem critical to analyzing genetic perturbations from the Connectivity Map. The issue consists of separating gene expression of individual genes from raw measurements obtained from gene pairs. We evaluated the outcomes using ground-truth data (direct measurements for single genes) obtained from the same samples.
We find that the top-ranked algorithm, based on random forest regression, beat the other methods in accuracy and reproducibility; more traditional gaussian-mixture methods performed well and tended to be faster, and the best deep learning approach yielded outcomes slightly inferior to the above methods. We anticipate researchers in the field will find the dataset and algorithms developed in this study to be a powerful research tool for benchmarking their deconvolution methods and a resource useful for multiple applications.
The data is freely available at clue.io/data (section Contests) and the software is on GitHub at https://github.com/cmap/gene_deconvolution_challenge.
Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Biology</subject><subject>Original Papers</subject><subject>Random Forest</subject><subject>Reproducibility of Results</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUUtP3DAQtipQef4F5GMvC3acODEHpAq1gITUCz1bE9vZdZV4UtsJ2n9P6C6rcprRfK-RPkKuOLvmTImb1qMPHcYBsjfpps3QclV8IadcyHpVNpwfHXYmTshZSn8YYxWr5FdyIkRTlKoqT8nr0zBGnH1YU-sMhhn7KXsMdHB5gzZRH-iS1eN6S_Mm4rTeUBxdWO4BZ_hHNTiMLvv3Pd1SCBTGsfdmB2ZcdG7hhOBM9rPPWzrAeEGOO-iTu9zPc_L754-X-8fV86-Hp_vvzysjJM8rW9WNsLaxgqlC2lbyloEVXNWOc6W6ElpQ3JZdawQ4xgtuKl6WAgpoBKs7cU7udr7j1A7OGhdyhF6P0Q8QtxrB689I8Bu9xlk3Za1kVS0G3_YGEf9OLmU9-GRc30NwOCVdVExJJgUTC1XuqCZiStF1hxjO9Htr-nNret_aIrz6_8mD7KMm8QZY9J6S</recordid><startdate>20210929</startdate><enddate>20210929</enddate><creator>Blasco, Andrea</creator><creator>Natoli, Ted</creator><creator>Endres, Michael G</creator><creator>Sergeev, Rinat A</creator><creator>Randazzo, Steven</creator><creator>Paik, Jin H</creator><creator>Macaluso, N J Maximilian</creator><creator>Narayan, Rajiv</creator><creator>Lu, Xiaodong</creator><creator>Peck, David</creator><creator>Lakhani, Karim R</creator><creator>Subramanian, Aravind</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210929</creationdate><title>Improving deconvolution methods in biology through open innovation competitions: an application to the connectivity map</title><author>Blasco, Andrea ; Natoli, Ted ; Endres, Michael G ; Sergeev, Rinat A ; Randazzo, Steven ; Paik, Jin H ; Macaluso, N J Maximilian ; Narayan, Rajiv ; Lu, Xiaodong ; Peck, David ; Lakhani, Karim R ; Subramanian, Aravind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d5783dd8d30926db61b0ad3197e1199f4aba91d4fbc3ae0121c51443a2a8307f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Biology</topic><topic>Original Papers</topic><topic>Random Forest</topic><topic>Reproducibility of Results</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blasco, Andrea</creatorcontrib><creatorcontrib>Natoli, Ted</creatorcontrib><creatorcontrib>Endres, Michael G</creatorcontrib><creatorcontrib>Sergeev, Rinat A</creatorcontrib><creatorcontrib>Randazzo, Steven</creatorcontrib><creatorcontrib>Paik, Jin H</creatorcontrib><creatorcontrib>Macaluso, N J Maximilian</creatorcontrib><creatorcontrib>Narayan, Rajiv</creatorcontrib><creatorcontrib>Lu, Xiaodong</creatorcontrib><creatorcontrib>Peck, David</creatorcontrib><creatorcontrib>Lakhani, Karim R</creatorcontrib><creatorcontrib>Subramanian, Aravind</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blasco, Andrea</au><au>Natoli, Ted</au><au>Endres, Michael G</au><au>Sergeev, Rinat A</au><au>Randazzo, Steven</au><au>Paik, Jin H</au><au>Macaluso, N J Maximilian</au><au>Narayan, Rajiv</au><au>Lu, Xiaodong</au><au>Peck, David</au><au>Lakhani, Karim R</au><au>Subramanian, Aravind</au><au>Mathelier, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving deconvolution methods in biology through open innovation competitions: an application to the connectivity map</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2021-09-29</date><risdate>2021</risdate><volume>37</volume><issue>18</issue><spage>2889</spage><epage>2895</epage><pages>2889-2895</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Do machine learning methods improve standard deconvolution techniques for gene expression data? This article uses a unique new dataset combined with an open innovation competition to evaluate a wide range of approaches developed by 294 competitors from 20 countries. The competition's objective was to address a deconvolution problem critical to analyzing genetic perturbations from the Connectivity Map. The issue consists of separating gene expression of individual genes from raw measurements obtained from gene pairs. We evaluated the outcomes using ground-truth data (direct measurements for single genes) obtained from the same samples.
We find that the top-ranked algorithm, based on random forest regression, beat the other methods in accuracy and reproducibility; more traditional gaussian-mixture methods performed well and tended to be faster, and the best deep learning approach yielded outcomes slightly inferior to the above methods. We anticipate researchers in the field will find the dataset and algorithms developed in this study to be a powerful research tool for benchmarking their deconvolution methods and a resource useful for multiple applications.
The data is freely available at clue.io/data (section Contests) and the software is on GitHub at https://github.com/cmap/gene_deconvolution_challenge.
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33824954</pmid><doi>10.1093/bioinformatics/btab192</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2021-09, Vol.37 (18), p.2889-2895 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8479655 |
source | MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Biology Original Papers Random Forest Reproducibility of Results Software |
title | Improving deconvolution methods in biology through open innovation competitions: an application to the connectivity map |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20deconvolution%20methods%20in%20biology%20through%20open%20innovation%20competitions:%20an%20application%20to%20the%20connectivity%20map&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Blasco,%20Andrea&rft.date=2021-09-29&rft.volume=37&rft.issue=18&rft.spage=2889&rft.epage=2895&rft.pages=2889-2895&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btab192&rft_dat=%3Cproquest_pubme%3E2509606303%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509606303&rft_id=info:pmid/33824954&rfr_iscdi=true |