Evaluating Endosomal Escape of Caspase-3-Containing Nanomaterials Using Split GFP
The ability for biologics to access intracellular targets hinges on the translocation of active, unmodified proteins. This is often achieved using nanoscale formulations, which enter cells through endocytosis. This uptake mechanism often limits the therapeutic potential of the biologics, as the prop...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2021-03, Vol.22 (3), p.1261-1272 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1272 |
---|---|
container_issue | 3 |
container_start_page | 1261 |
container_title | Biomacromolecules |
container_volume | 22 |
creator | Anson, Francesca Liu, Bin Kanjilal, Pintu Wu, Peidong Hardy, Jeanne A Thayumanavan, S |
description | The ability for biologics to access intracellular targets hinges on the translocation of active, unmodified proteins. This is often achieved using nanoscale formulations, which enter cells through endocytosis. This uptake mechanism often limits the therapeutic potential of the biologics, as the propensity of the nanocarrier to escape the endosome becomes the key determinant. To appropriately evaluate and compare competing delivery systems of disparate compositions, it is therefore critical to assess endosomal escape efficiencies. Unfortunately, quantitative tools to assess endosomal escape are lacking, and standard approaches often lead to an erroneous interpretation of cytosolic localization. In this study we use a split-complementation endosomal escape (SEE) assay to evaluate levels of cytosolic caspase-3 following delivery by polymer nanogels and mesoporous silica nanoparticles. In particular, we use SEE as a means to enable the systematic investigation of the effect of polymer composition, polymer architecture (random vs block), hydrophobicity, and surface functionality. Although polymer structure had little influence on endosomal escape, nanogel functionalization with cationic and pH-sensitive peptides significantly enhanced endosomal escape levels and, further, significantly increased the amount of nanogel per endosome. This work serves as a guide for developing an optimal caspase-3 delivery system, as this caspase-3 variant can be easily substituted for a therapeutic caspase-3 cargo in any system that results in cytosolic accumulation and cargo release. In addition, these data provide a framework that can be readily applied to a wide variety of protein cargos to assess the independent contributions of both uptake and endosomal escape of a wide range of protein delivery vehicles. |
doi_str_mv | 10.1021/acs.biomac.0c01767 |
format | Article |
fullrecord | <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8477791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b28653238</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-66b13e1dae4c3e7fe1a64f73e1a6ee769481130cbe96561158065d9d784f49a83</originalsourceid><addsrcrecordid>eNp9kF1PgzAUhhujcXP6B7ww_AGwh5YWbkwMYdNk8SO66-YAZbIwIJQt8d9bZC5649VpTt_3OclDyDVQD6gPt5gZLy2bLWYezShIIU_IFAJfuFxQ__T7HbhSRnJCLozZUEojxoNzMmEsiABEOCWvyR6rHfZlvXaSOm-MxVVOYjJstdMUToymRaNd5sZN3WNZD8EnrG2s112JlXFWZti9tVXZO4v5yyU5K-xaXx3mjKzmyXv84C6fF4_x_dJFzqF3hUiBachR84xpWWhAwQvJhqm1FBEPARjNUh2JQAAEIRVBHuUy5AWPMGQzcjdy21261Xmm677DSrVducXuUzVYqr8_dfmh1s1ehVxaJ2AB_gjIusaYThfHLlA1CFZWsBoFq4NgW7r5ffVY-TFqA94YGMqbZtfVVsJ_xC-Z0YoJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluating Endosomal Escape of Caspase-3-Containing Nanomaterials Using Split GFP</title><source>ACS Publications</source><creator>Anson, Francesca ; Liu, Bin ; Kanjilal, Pintu ; Wu, Peidong ; Hardy, Jeanne A ; Thayumanavan, S</creator><creatorcontrib>Anson, Francesca ; Liu, Bin ; Kanjilal, Pintu ; Wu, Peidong ; Hardy, Jeanne A ; Thayumanavan, S</creatorcontrib><description>The ability for biologics to access intracellular targets hinges on the translocation of active, unmodified proteins. This is often achieved using nanoscale formulations, which enter cells through endocytosis. This uptake mechanism often limits the therapeutic potential of the biologics, as the propensity of the nanocarrier to escape the endosome becomes the key determinant. To appropriately evaluate and compare competing delivery systems of disparate compositions, it is therefore critical to assess endosomal escape efficiencies. Unfortunately, quantitative tools to assess endosomal escape are lacking, and standard approaches often lead to an erroneous interpretation of cytosolic localization. In this study we use a split-complementation endosomal escape (SEE) assay to evaluate levels of cytosolic caspase-3 following delivery by polymer nanogels and mesoporous silica nanoparticles. In particular, we use SEE as a means to enable the systematic investigation of the effect of polymer composition, polymer architecture (random vs block), hydrophobicity, and surface functionality. Although polymer structure had little influence on endosomal escape, nanogel functionalization with cationic and pH-sensitive peptides significantly enhanced endosomal escape levels and, further, significantly increased the amount of nanogel per endosome. This work serves as a guide for developing an optimal caspase-3 delivery system, as this caspase-3 variant can be easily substituted for a therapeutic caspase-3 cargo in any system that results in cytosolic accumulation and cargo release. In addition, these data provide a framework that can be readily applied to a wide variety of protein cargos to assess the independent contributions of both uptake and endosomal escape of a wide range of protein delivery vehicles.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.0c01767</identifier><identifier>PMID: 33591168</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Biomacromolecules, 2021-03, Vol.22 (3), p.1261-1272</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-66b13e1dae4c3e7fe1a64f73e1a6ee769481130cbe96561158065d9d784f49a83</citedby><cites>FETCH-LOGICAL-a441t-66b13e1dae4c3e7fe1a64f73e1a6ee769481130cbe96561158065d9d784f49a83</cites><orcidid>0000-0003-1736-9392 ; 0000-0002-6475-6726 ; 0000-0002-3406-7997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biomac.0c01767$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biomac.0c01767$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33591168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anson, Francesca</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Kanjilal, Pintu</creatorcontrib><creatorcontrib>Wu, Peidong</creatorcontrib><creatorcontrib>Hardy, Jeanne A</creatorcontrib><creatorcontrib>Thayumanavan, S</creatorcontrib><title>Evaluating Endosomal Escape of Caspase-3-Containing Nanomaterials Using Split GFP</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>The ability for biologics to access intracellular targets hinges on the translocation of active, unmodified proteins. This is often achieved using nanoscale formulations, which enter cells through endocytosis. This uptake mechanism often limits the therapeutic potential of the biologics, as the propensity of the nanocarrier to escape the endosome becomes the key determinant. To appropriately evaluate and compare competing delivery systems of disparate compositions, it is therefore critical to assess endosomal escape efficiencies. Unfortunately, quantitative tools to assess endosomal escape are lacking, and standard approaches often lead to an erroneous interpretation of cytosolic localization. In this study we use a split-complementation endosomal escape (SEE) assay to evaluate levels of cytosolic caspase-3 following delivery by polymer nanogels and mesoporous silica nanoparticles. In particular, we use SEE as a means to enable the systematic investigation of the effect of polymer composition, polymer architecture (random vs block), hydrophobicity, and surface functionality. Although polymer structure had little influence on endosomal escape, nanogel functionalization with cationic and pH-sensitive peptides significantly enhanced endosomal escape levels and, further, significantly increased the amount of nanogel per endosome. This work serves as a guide for developing an optimal caspase-3 delivery system, as this caspase-3 variant can be easily substituted for a therapeutic caspase-3 cargo in any system that results in cytosolic accumulation and cargo release. In addition, these data provide a framework that can be readily applied to a wide variety of protein cargos to assess the independent contributions of both uptake and endosomal escape of a wide range of protein delivery vehicles.</description><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1PgzAUhhujcXP6B7ww_AGwh5YWbkwMYdNk8SO66-YAZbIwIJQt8d9bZC5649VpTt_3OclDyDVQD6gPt5gZLy2bLWYezShIIU_IFAJfuFxQ__T7HbhSRnJCLozZUEojxoNzMmEsiABEOCWvyR6rHfZlvXaSOm-MxVVOYjJstdMUToymRaNd5sZN3WNZD8EnrG2s112JlXFWZti9tVXZO4v5yyU5K-xaXx3mjKzmyXv84C6fF4_x_dJFzqF3hUiBachR84xpWWhAwQvJhqm1FBEPARjNUh2JQAAEIRVBHuUy5AWPMGQzcjdy21261Xmm677DSrVducXuUzVYqr8_dfmh1s1ehVxaJ2AB_gjIusaYThfHLlA1CFZWsBoFq4NgW7r5ffVY-TFqA94YGMqbZtfVVsJ_xC-Z0YoJ</recordid><startdate>20210308</startdate><enddate>20210308</enddate><creator>Anson, Francesca</creator><creator>Liu, Bin</creator><creator>Kanjilal, Pintu</creator><creator>Wu, Peidong</creator><creator>Hardy, Jeanne A</creator><creator>Thayumanavan, S</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1736-9392</orcidid><orcidid>https://orcid.org/0000-0002-6475-6726</orcidid><orcidid>https://orcid.org/0000-0002-3406-7997</orcidid></search><sort><creationdate>20210308</creationdate><title>Evaluating Endosomal Escape of Caspase-3-Containing Nanomaterials Using Split GFP</title><author>Anson, Francesca ; Liu, Bin ; Kanjilal, Pintu ; Wu, Peidong ; Hardy, Jeanne A ; Thayumanavan, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-66b13e1dae4c3e7fe1a64f73e1a6ee769481130cbe96561158065d9d784f49a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anson, Francesca</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Kanjilal, Pintu</creatorcontrib><creatorcontrib>Wu, Peidong</creatorcontrib><creatorcontrib>Hardy, Jeanne A</creatorcontrib><creatorcontrib>Thayumanavan, S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anson, Francesca</au><au>Liu, Bin</au><au>Kanjilal, Pintu</au><au>Wu, Peidong</au><au>Hardy, Jeanne A</au><au>Thayumanavan, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating Endosomal Escape of Caspase-3-Containing Nanomaterials Using Split GFP</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2021-03-08</date><risdate>2021</risdate><volume>22</volume><issue>3</issue><spage>1261</spage><epage>1272</epage><pages>1261-1272</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>The ability for biologics to access intracellular targets hinges on the translocation of active, unmodified proteins. This is often achieved using nanoscale formulations, which enter cells through endocytosis. This uptake mechanism often limits the therapeutic potential of the biologics, as the propensity of the nanocarrier to escape the endosome becomes the key determinant. To appropriately evaluate and compare competing delivery systems of disparate compositions, it is therefore critical to assess endosomal escape efficiencies. Unfortunately, quantitative tools to assess endosomal escape are lacking, and standard approaches often lead to an erroneous interpretation of cytosolic localization. In this study we use a split-complementation endosomal escape (SEE) assay to evaluate levels of cytosolic caspase-3 following delivery by polymer nanogels and mesoporous silica nanoparticles. In particular, we use SEE as a means to enable the systematic investigation of the effect of polymer composition, polymer architecture (random vs block), hydrophobicity, and surface functionality. Although polymer structure had little influence on endosomal escape, nanogel functionalization with cationic and pH-sensitive peptides significantly enhanced endosomal escape levels and, further, significantly increased the amount of nanogel per endosome. This work serves as a guide for developing an optimal caspase-3 delivery system, as this caspase-3 variant can be easily substituted for a therapeutic caspase-3 cargo in any system that results in cytosolic accumulation and cargo release. In addition, these data provide a framework that can be readily applied to a wide variety of protein cargos to assess the independent contributions of both uptake and endosomal escape of a wide range of protein delivery vehicles.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33591168</pmid><doi>10.1021/acs.biomac.0c01767</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1736-9392</orcidid><orcidid>https://orcid.org/0000-0002-6475-6726</orcidid><orcidid>https://orcid.org/0000-0002-3406-7997</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2021-03, Vol.22 (3), p.1261-1272 |
issn | 1525-7797 1526-4602 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8477791 |
source | ACS Publications |
title | Evaluating Endosomal Escape of Caspase-3-Containing Nanomaterials Using Split GFP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20Endosomal%20Escape%20of%20Caspase-3-Containing%20Nanomaterials%20Using%20Split%20GFP&rft.jtitle=Biomacromolecules&rft.au=Anson,%20Francesca&rft.date=2021-03-08&rft.volume=22&rft.issue=3&rft.spage=1261&rft.epage=1272&rft.pages=1261-1272&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.0c01767&rft_dat=%3Cacs_pubme%3Eb28653238%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33591168&rfr_iscdi=true |