Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs
[Display omitted] Dopamine transporter (DAT) blockers like cocaine and many other abused and therapeutic drugs bind and stabilize an inactive form of the transporter inhibiting reuptake of extracellular dopamine (DA). The resulting increases in DA lead to the ability of these drugs to induce psychom...
Gespeichert in:
Veröffentlicht in: | Biochemical pharmacology 2017-10, Vol.142, p.204-215 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 215 |
---|---|
container_issue | |
container_start_page | 204 |
container_title | Biochemical pharmacology |
container_volume | 142 |
creator | Krout, Danielle Pramod, Akula Bala Dahal, Rejwi Acharya Tomlinson, Michael J. Sharma, Babita Foster, James D. Zou, Mu-Fa Boatang, Comfort Newman, Amy Hauck Lever, John R. Vaughan, Roxanne A. Henry, L. Keith |
description | [Display omitted]
Dopamine transporter (DAT) blockers like cocaine and many other abused and therapeutic drugs bind and stabilize an inactive form of the transporter inhibiting reuptake of extracellular dopamine (DA). The resulting increases in DA lead to the ability of these drugs to induce psychomotor alterations and addiction, but paradoxical findings in animal models indicate that not all DAT antagonists induce cocaine-like behavioral outcomes. How this occurs is not known, but one possibility is that uptake inhibitors may bind at multiple locations or in different poses to stabilize distinct conformational transporter states associated with differential neurochemical endpoints. Understanding the molecular mechanisms governing the pharmacological inhibition of DAT is therefore key for understanding the requisite interactions for behavioral modulation and addiction. Previously, we leveraged complementary computational docking, mutagenesis, peptide mapping, and substituted cysteine accessibility strategies to identify the specific adduction site and binding pose for the crosslinkable, photoactive cocaine analog, RTI 82, which contains a photoactive azide attached at the 2β position of the tropane pharmacophore. Here, we utilize similar methodology with a different cocaine analog N-[4-(4-azido-3-I-iodophenyl)-butyl]-2-carbomethoxy-3-(4-chlorophenyl)tropane, MFZ 2–24, where the photoactive azide is attached to the tropane nitrogen. In contrast to RTI 82, which crosslinked into residue Phe319 of transmembrane domain (TM) 6, our findings show that MFZ 2–24 adducts to Leu80 in TM1 with modeling and biochemical data indicating that MFZ 2–24, like RTI 82, occupies the central S1 binding pocket with the (+)-charged tropane ring nitrogen coordinating with the (−)-charged carboxyl side chain of Asp79. The superimposition of the tropane ring in the three-dimensional binding poses of these two distinct ligands provides strong experimental evidence for cocaine binding to DAT in the S1 site and the importance of the tropane moiety in competitive mechanisms of DA uptake inhibition. These findings set a structure-function baseline for comparison of typical and atypical DAT inhibitors and how their interactions with DAT could lead to the loss of cocaine-like behaviors. |
doi_str_mv | 10.1016/j.bcp.2017.07.015 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8475752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006295217304926</els_id><sourcerecordid>28734777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d7f5f1af1bfaa89dfe7e3463d1b2d5013c59a549ced741d16e96322a714ee0b63</originalsourceid><addsrcrecordid>eNp9kd-K1DAUxoMo7rj6AN5IXqBjTts0LYIgi38WFrxQr0OanEwztElJMgP7Fj6y6Y4ueiMcSM7J-X7h4yPkNbA9MOjeHvejXvc1A7FnpYA_ITvoRVPVQ9c_JTvGWFfuvL4iL1I6bm3fwXNyVZelVgixIz9v_eRGl0OkC-pJeZeWRJ2neUL6DejovHH-QJPLSIN9GJuwqsV5pDkqn9YQM0Zq0JaRoeM9XU5zdtWDYgkz6tOsIs1YpHFDFco6hRyUzu6MVAetNpjyag6H9JI8s2pO-Or3eU1-fPr4_eZLdff18-3Nh7tKtxxyZYTlFpSF0SrVD8aiwKbtGgNjbTiDRvNB8XbQaEQLBjocuqaulYAWkY1dc03eX7jraVzQaPTFzSzX6BYV72VQTv774t0kD-Es-1ZwwesCgAtAx5BSRPuoBSa3eORRlnjkFo9kpYAXzZu_P31U_MmjLLy7LGCxfnYYZdIOfXHhIuosTXD_wf8C6Xul2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Krout, Danielle ; Pramod, Akula Bala ; Dahal, Rejwi Acharya ; Tomlinson, Michael J. ; Sharma, Babita ; Foster, James D. ; Zou, Mu-Fa ; Boatang, Comfort ; Newman, Amy Hauck ; Lever, John R. ; Vaughan, Roxanne A. ; Henry, L. Keith</creator><creatorcontrib>Krout, Danielle ; Pramod, Akula Bala ; Dahal, Rejwi Acharya ; Tomlinson, Michael J. ; Sharma, Babita ; Foster, James D. ; Zou, Mu-Fa ; Boatang, Comfort ; Newman, Amy Hauck ; Lever, John R. ; Vaughan, Roxanne A. ; Henry, L. Keith</creatorcontrib><description>[Display omitted]
Dopamine transporter (DAT) blockers like cocaine and many other abused and therapeutic drugs bind and stabilize an inactive form of the transporter inhibiting reuptake of extracellular dopamine (DA). The resulting increases in DA lead to the ability of these drugs to induce psychomotor alterations and addiction, but paradoxical findings in animal models indicate that not all DAT antagonists induce cocaine-like behavioral outcomes. How this occurs is not known, but one possibility is that uptake inhibitors may bind at multiple locations or in different poses to stabilize distinct conformational transporter states associated with differential neurochemical endpoints. Understanding the molecular mechanisms governing the pharmacological inhibition of DAT is therefore key for understanding the requisite interactions for behavioral modulation and addiction. Previously, we leveraged complementary computational docking, mutagenesis, peptide mapping, and substituted cysteine accessibility strategies to identify the specific adduction site and binding pose for the crosslinkable, photoactive cocaine analog, RTI 82, which contains a photoactive azide attached at the 2β position of the tropane pharmacophore. Here, we utilize similar methodology with a different cocaine analog N-[4-(4-azido-3-I-iodophenyl)-butyl]-2-carbomethoxy-3-(4-chlorophenyl)tropane, MFZ 2–24, where the photoactive azide is attached to the tropane nitrogen. In contrast to RTI 82, which crosslinked into residue Phe319 of transmembrane domain (TM) 6, our findings show that MFZ 2–24 adducts to Leu80 in TM1 with modeling and biochemical data indicating that MFZ 2–24, like RTI 82, occupies the central S1 binding pocket with the (+)-charged tropane ring nitrogen coordinating with the (−)-charged carboxyl side chain of Asp79. The superimposition of the tropane ring in the three-dimensional binding poses of these two distinct ligands provides strong experimental evidence for cocaine binding to DAT in the S1 site and the importance of the tropane moiety in competitive mechanisms of DA uptake inhibition. These findings set a structure-function baseline for comparison of typical and atypical DAT inhibitors and how their interactions with DAT could lead to the loss of cocaine-like behaviors.</description><identifier>ISSN: 0006-2952</identifier><identifier>EISSN: 1873-2968</identifier><identifier>DOI: 10.1016/j.bcp.2017.07.015</identifier><identifier>PMID: 28734777</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Addiction ; Animals ; Azides - chemistry ; Azides - metabolism ; Binding Sites ; Cocaine ; Cocaine - analogs & derivatives ; Cocaine - chemistry ; Cocaine - metabolism ; Computational modeling ; Cross-Linking Reagents - chemistry ; Cross-Linking Reagents - metabolism ; Dopamine Plasma Membrane Transport Proteins - antagonists & inhibitors ; Dopamine Plasma Membrane Transport Proteins - chemistry ; Dopamine transporter ; Iodine Radioisotopes ; Ligands ; LLC-PK1 Cells ; Molecular Docking Simulation ; Molecular Dynamics Simulation ; Molecular Structure ; Mutant Proteins - chemistry ; Mutant Proteins - metabolism ; Peptide Mapping ; Photoaffinity labeling ; Photoaffinity Labels ; Protein Binding ; Structure-Activity Relationship ; Substance-Related Disorders - metabolism ; Substance-Related Disorders - psychology ; Swine ; Tropanes - chemistry ; Tropanes - metabolism</subject><ispartof>Biochemical pharmacology, 2017-10, Vol.142, p.204-215</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d7f5f1af1bfaa89dfe7e3463d1b2d5013c59a549ced741d16e96322a714ee0b63</citedby><cites>FETCH-LOGICAL-c451t-d7f5f1af1bfaa89dfe7e3463d1b2d5013c59a549ced741d16e96322a714ee0b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bcp.2017.07.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28734777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krout, Danielle</creatorcontrib><creatorcontrib>Pramod, Akula Bala</creatorcontrib><creatorcontrib>Dahal, Rejwi Acharya</creatorcontrib><creatorcontrib>Tomlinson, Michael J.</creatorcontrib><creatorcontrib>Sharma, Babita</creatorcontrib><creatorcontrib>Foster, James D.</creatorcontrib><creatorcontrib>Zou, Mu-Fa</creatorcontrib><creatorcontrib>Boatang, Comfort</creatorcontrib><creatorcontrib>Newman, Amy Hauck</creatorcontrib><creatorcontrib>Lever, John R.</creatorcontrib><creatorcontrib>Vaughan, Roxanne A.</creatorcontrib><creatorcontrib>Henry, L. Keith</creatorcontrib><title>Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs</title><title>Biochemical pharmacology</title><addtitle>Biochem Pharmacol</addtitle><description>[Display omitted]
Dopamine transporter (DAT) blockers like cocaine and many other abused and therapeutic drugs bind and stabilize an inactive form of the transporter inhibiting reuptake of extracellular dopamine (DA). The resulting increases in DA lead to the ability of these drugs to induce psychomotor alterations and addiction, but paradoxical findings in animal models indicate that not all DAT antagonists induce cocaine-like behavioral outcomes. How this occurs is not known, but one possibility is that uptake inhibitors may bind at multiple locations or in different poses to stabilize distinct conformational transporter states associated with differential neurochemical endpoints. Understanding the molecular mechanisms governing the pharmacological inhibition of DAT is therefore key for understanding the requisite interactions for behavioral modulation and addiction. Previously, we leveraged complementary computational docking, mutagenesis, peptide mapping, and substituted cysteine accessibility strategies to identify the specific adduction site and binding pose for the crosslinkable, photoactive cocaine analog, RTI 82, which contains a photoactive azide attached at the 2β position of the tropane pharmacophore. Here, we utilize similar methodology with a different cocaine analog N-[4-(4-azido-3-I-iodophenyl)-butyl]-2-carbomethoxy-3-(4-chlorophenyl)tropane, MFZ 2–24, where the photoactive azide is attached to the tropane nitrogen. In contrast to RTI 82, which crosslinked into residue Phe319 of transmembrane domain (TM) 6, our findings show that MFZ 2–24 adducts to Leu80 in TM1 with modeling and biochemical data indicating that MFZ 2–24, like RTI 82, occupies the central S1 binding pocket with the (+)-charged tropane ring nitrogen coordinating with the (−)-charged carboxyl side chain of Asp79. The superimposition of the tropane ring in the three-dimensional binding poses of these two distinct ligands provides strong experimental evidence for cocaine binding to DAT in the S1 site and the importance of the tropane moiety in competitive mechanisms of DA uptake inhibition. These findings set a structure-function baseline for comparison of typical and atypical DAT inhibitors and how their interactions with DAT could lead to the loss of cocaine-like behaviors.</description><subject>Addiction</subject><subject>Animals</subject><subject>Azides - chemistry</subject><subject>Azides - metabolism</subject><subject>Binding Sites</subject><subject>Cocaine</subject><subject>Cocaine - analogs & derivatives</subject><subject>Cocaine - chemistry</subject><subject>Cocaine - metabolism</subject><subject>Computational modeling</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Cross-Linking Reagents - metabolism</subject><subject>Dopamine Plasma Membrane Transport Proteins - antagonists & inhibitors</subject><subject>Dopamine Plasma Membrane Transport Proteins - chemistry</subject><subject>Dopamine transporter</subject><subject>Iodine Radioisotopes</subject><subject>Ligands</subject><subject>LLC-PK1 Cells</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Structure</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - metabolism</subject><subject>Peptide Mapping</subject><subject>Photoaffinity labeling</subject><subject>Photoaffinity Labels</subject><subject>Protein Binding</subject><subject>Structure-Activity Relationship</subject><subject>Substance-Related Disorders - metabolism</subject><subject>Substance-Related Disorders - psychology</subject><subject>Swine</subject><subject>Tropanes - chemistry</subject><subject>Tropanes - metabolism</subject><issn>0006-2952</issn><issn>1873-2968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd-K1DAUxoMo7rj6AN5IXqBjTts0LYIgi38WFrxQr0OanEwztElJMgP7Fj6y6Y4ueiMcSM7J-X7h4yPkNbA9MOjeHvejXvc1A7FnpYA_ITvoRVPVQ9c_JTvGWFfuvL4iL1I6bm3fwXNyVZelVgixIz9v_eRGl0OkC-pJeZeWRJ2neUL6DejovHH-QJPLSIN9GJuwqsV5pDkqn9YQM0Zq0JaRoeM9XU5zdtWDYgkz6tOsIs1YpHFDFco6hRyUzu6MVAetNpjyag6H9JI8s2pO-Or3eU1-fPr4_eZLdff18-3Nh7tKtxxyZYTlFpSF0SrVD8aiwKbtGgNjbTiDRvNB8XbQaEQLBjocuqaulYAWkY1dc03eX7jraVzQaPTFzSzX6BYV72VQTv774t0kD-Es-1ZwwesCgAtAx5BSRPuoBSa3eORRlnjkFo9kpYAXzZu_P31U_MmjLLy7LGCxfnYYZdIOfXHhIuosTXD_wf8C6Xul2Q</recordid><startdate>20171015</startdate><enddate>20171015</enddate><creator>Krout, Danielle</creator><creator>Pramod, Akula Bala</creator><creator>Dahal, Rejwi Acharya</creator><creator>Tomlinson, Michael J.</creator><creator>Sharma, Babita</creator><creator>Foster, James D.</creator><creator>Zou, Mu-Fa</creator><creator>Boatang, Comfort</creator><creator>Newman, Amy Hauck</creator><creator>Lever, John R.</creator><creator>Vaughan, Roxanne A.</creator><creator>Henry, L. Keith</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20171015</creationdate><title>Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs</title><author>Krout, Danielle ; Pramod, Akula Bala ; Dahal, Rejwi Acharya ; Tomlinson, Michael J. ; Sharma, Babita ; Foster, James D. ; Zou, Mu-Fa ; Boatang, Comfort ; Newman, Amy Hauck ; Lever, John R. ; Vaughan, Roxanne A. ; Henry, L. Keith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d7f5f1af1bfaa89dfe7e3463d1b2d5013c59a549ced741d16e96322a714ee0b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Addiction</topic><topic>Animals</topic><topic>Azides - chemistry</topic><topic>Azides - metabolism</topic><topic>Binding Sites</topic><topic>Cocaine</topic><topic>Cocaine - analogs & derivatives</topic><topic>Cocaine - chemistry</topic><topic>Cocaine - metabolism</topic><topic>Computational modeling</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Cross-Linking Reagents - metabolism</topic><topic>Dopamine Plasma Membrane Transport Proteins - antagonists & inhibitors</topic><topic>Dopamine Plasma Membrane Transport Proteins - chemistry</topic><topic>Dopamine transporter</topic><topic>Iodine Radioisotopes</topic><topic>Ligands</topic><topic>LLC-PK1 Cells</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Structure</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - metabolism</topic><topic>Peptide Mapping</topic><topic>Photoaffinity labeling</topic><topic>Photoaffinity Labels</topic><topic>Protein Binding</topic><topic>Structure-Activity Relationship</topic><topic>Substance-Related Disorders - metabolism</topic><topic>Substance-Related Disorders - psychology</topic><topic>Swine</topic><topic>Tropanes - chemistry</topic><topic>Tropanes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krout, Danielle</creatorcontrib><creatorcontrib>Pramod, Akula Bala</creatorcontrib><creatorcontrib>Dahal, Rejwi Acharya</creatorcontrib><creatorcontrib>Tomlinson, Michael J.</creatorcontrib><creatorcontrib>Sharma, Babita</creatorcontrib><creatorcontrib>Foster, James D.</creatorcontrib><creatorcontrib>Zou, Mu-Fa</creatorcontrib><creatorcontrib>Boatang, Comfort</creatorcontrib><creatorcontrib>Newman, Amy Hauck</creatorcontrib><creatorcontrib>Lever, John R.</creatorcontrib><creatorcontrib>Vaughan, Roxanne A.</creatorcontrib><creatorcontrib>Henry, L. Keith</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krout, Danielle</au><au>Pramod, Akula Bala</au><au>Dahal, Rejwi Acharya</au><au>Tomlinson, Michael J.</au><au>Sharma, Babita</au><au>Foster, James D.</au><au>Zou, Mu-Fa</au><au>Boatang, Comfort</au><au>Newman, Amy Hauck</au><au>Lever, John R.</au><au>Vaughan, Roxanne A.</au><au>Henry, L. Keith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs</atitle><jtitle>Biochemical pharmacology</jtitle><addtitle>Biochem Pharmacol</addtitle><date>2017-10-15</date><risdate>2017</risdate><volume>142</volume><spage>204</spage><epage>215</epage><pages>204-215</pages><issn>0006-2952</issn><eissn>1873-2968</eissn><abstract>[Display omitted]
Dopamine transporter (DAT) blockers like cocaine and many other abused and therapeutic drugs bind and stabilize an inactive form of the transporter inhibiting reuptake of extracellular dopamine (DA). The resulting increases in DA lead to the ability of these drugs to induce psychomotor alterations and addiction, but paradoxical findings in animal models indicate that not all DAT antagonists induce cocaine-like behavioral outcomes. How this occurs is not known, but one possibility is that uptake inhibitors may bind at multiple locations or in different poses to stabilize distinct conformational transporter states associated with differential neurochemical endpoints. Understanding the molecular mechanisms governing the pharmacological inhibition of DAT is therefore key for understanding the requisite interactions for behavioral modulation and addiction. Previously, we leveraged complementary computational docking, mutagenesis, peptide mapping, and substituted cysteine accessibility strategies to identify the specific adduction site and binding pose for the crosslinkable, photoactive cocaine analog, RTI 82, which contains a photoactive azide attached at the 2β position of the tropane pharmacophore. Here, we utilize similar methodology with a different cocaine analog N-[4-(4-azido-3-I-iodophenyl)-butyl]-2-carbomethoxy-3-(4-chlorophenyl)tropane, MFZ 2–24, where the photoactive azide is attached to the tropane nitrogen. In contrast to RTI 82, which crosslinked into residue Phe319 of transmembrane domain (TM) 6, our findings show that MFZ 2–24 adducts to Leu80 in TM1 with modeling and biochemical data indicating that MFZ 2–24, like RTI 82, occupies the central S1 binding pocket with the (+)-charged tropane ring nitrogen coordinating with the (−)-charged carboxyl side chain of Asp79. The superimposition of the tropane ring in the three-dimensional binding poses of these two distinct ligands provides strong experimental evidence for cocaine binding to DAT in the S1 site and the importance of the tropane moiety in competitive mechanisms of DA uptake inhibition. These findings set a structure-function baseline for comparison of typical and atypical DAT inhibitors and how their interactions with DAT could lead to the loss of cocaine-like behaviors.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>28734777</pmid><doi>10.1016/j.bcp.2017.07.015</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2952 |
ispartof | Biochemical pharmacology, 2017-10, Vol.142, p.204-215 |
issn | 0006-2952 1873-2968 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8475752 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Addiction Animals Azides - chemistry Azides - metabolism Binding Sites Cocaine Cocaine - analogs & derivatives Cocaine - chemistry Cocaine - metabolism Computational modeling Cross-Linking Reagents - chemistry Cross-Linking Reagents - metabolism Dopamine Plasma Membrane Transport Proteins - antagonists & inhibitors Dopamine Plasma Membrane Transport Proteins - chemistry Dopamine transporter Iodine Radioisotopes Ligands LLC-PK1 Cells Molecular Docking Simulation Molecular Dynamics Simulation Molecular Structure Mutant Proteins - chemistry Mutant Proteins - metabolism Peptide Mapping Photoaffinity labeling Photoaffinity Labels Protein Binding Structure-Activity Relationship Substance-Related Disorders - metabolism Substance-Related Disorders - psychology Swine Tropanes - chemistry Tropanes - metabolism |
title | Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibitor%20mechanisms%20in%20the%20S1%20binding%20site%20of%20the%20dopamine%20transporter%20defined%20by%20multi-site%20molecular%20tethering%20of%20photoactive%20cocaine%20analogs&rft.jtitle=Biochemical%20pharmacology&rft.au=Krout,%20Danielle&rft.date=2017-10-15&rft.volume=142&rft.spage=204&rft.epage=215&rft.pages=204-215&rft.issn=0006-2952&rft.eissn=1873-2968&rft_id=info:doi/10.1016/j.bcp.2017.07.015&rft_dat=%3Cpubmed_cross%3E28734777%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28734777&rft_els_id=S0006295217304926&rfr_iscdi=true |