Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs

[Display omitted] Dopamine transporter (DAT) blockers like cocaine and many other abused and therapeutic drugs bind and stabilize an inactive form of the transporter inhibiting reuptake of extracellular dopamine (DA). The resulting increases in DA lead to the ability of these drugs to induce psychom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 2017-10, Vol.142, p.204-215
Hauptverfasser: Krout, Danielle, Pramod, Akula Bala, Dahal, Rejwi Acharya, Tomlinson, Michael J., Sharma, Babita, Foster, James D., Zou, Mu-Fa, Boatang, Comfort, Newman, Amy Hauck, Lever, John R., Vaughan, Roxanne A., Henry, L. Keith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue
container_start_page 204
container_title Biochemical pharmacology
container_volume 142
creator Krout, Danielle
Pramod, Akula Bala
Dahal, Rejwi Acharya
Tomlinson, Michael J.
Sharma, Babita
Foster, James D.
Zou, Mu-Fa
Boatang, Comfort
Newman, Amy Hauck
Lever, John R.
Vaughan, Roxanne A.
Henry, L. Keith
description [Display omitted] Dopamine transporter (DAT) blockers like cocaine and many other abused and therapeutic drugs bind and stabilize an inactive form of the transporter inhibiting reuptake of extracellular dopamine (DA). The resulting increases in DA lead to the ability of these drugs to induce psychomotor alterations and addiction, but paradoxical findings in animal models indicate that not all DAT antagonists induce cocaine-like behavioral outcomes. How this occurs is not known, but one possibility is that uptake inhibitors may bind at multiple locations or in different poses to stabilize distinct conformational transporter states associated with differential neurochemical endpoints. Understanding the molecular mechanisms governing the pharmacological inhibition of DAT is therefore key for understanding the requisite interactions for behavioral modulation and addiction. Previously, we leveraged complementary computational docking, mutagenesis, peptide mapping, and substituted cysteine accessibility strategies to identify the specific adduction site and binding pose for the crosslinkable, photoactive cocaine analog, RTI 82, which contains a photoactive azide attached at the 2β position of the tropane pharmacophore. Here, we utilize similar methodology with a different cocaine analog N-[4-(4-azido-3-I-iodophenyl)-butyl]-2-carbomethoxy-3-(4-chlorophenyl)tropane, MFZ 2–24, where the photoactive azide is attached to the tropane nitrogen. In contrast to RTI 82, which crosslinked into residue Phe319 of transmembrane domain (TM) 6, our findings show that MFZ 2–24 adducts to Leu80 in TM1 with modeling and biochemical data indicating that MFZ 2–24, like RTI 82, occupies the central S1 binding pocket with the (+)-charged tropane ring nitrogen coordinating with the (−)-charged carboxyl side chain of Asp79. The superimposition of the tropane ring in the three-dimensional binding poses of these two distinct ligands provides strong experimental evidence for cocaine binding to DAT in the S1 site and the importance of the tropane moiety in competitive mechanisms of DA uptake inhibition. These findings set a structure-function baseline for comparison of typical and atypical DAT inhibitors and how their interactions with DAT could lead to the loss of cocaine-like behaviors.
doi_str_mv 10.1016/j.bcp.2017.07.015
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8475752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006295217304926</els_id><sourcerecordid>28734777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d7f5f1af1bfaa89dfe7e3463d1b2d5013c59a549ced741d16e96322a714ee0b63</originalsourceid><addsrcrecordid>eNp9kd-K1DAUxoMo7rj6AN5IXqBjTts0LYIgi38WFrxQr0OanEwztElJMgP7Fj6y6Y4ueiMcSM7J-X7h4yPkNbA9MOjeHvejXvc1A7FnpYA_ITvoRVPVQ9c_JTvGWFfuvL4iL1I6bm3fwXNyVZelVgixIz9v_eRGl0OkC-pJeZeWRJ2neUL6DejovHH-QJPLSIN9GJuwqsV5pDkqn9YQM0Zq0JaRoeM9XU5zdtWDYgkz6tOsIs1YpHFDFco6hRyUzu6MVAetNpjyag6H9JI8s2pO-Or3eU1-fPr4_eZLdff18-3Nh7tKtxxyZYTlFpSF0SrVD8aiwKbtGgNjbTiDRvNB8XbQaEQLBjocuqaulYAWkY1dc03eX7jraVzQaPTFzSzX6BYV72VQTv774t0kD-Es-1ZwwesCgAtAx5BSRPuoBSa3eORRlnjkFo9kpYAXzZu_P31U_MmjLLy7LGCxfnYYZdIOfXHhIuosTXD_wf8C6Xul2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Krout, Danielle ; Pramod, Akula Bala ; Dahal, Rejwi Acharya ; Tomlinson, Michael J. ; Sharma, Babita ; Foster, James D. ; Zou, Mu-Fa ; Boatang, Comfort ; Newman, Amy Hauck ; Lever, John R. ; Vaughan, Roxanne A. ; Henry, L. Keith</creator><creatorcontrib>Krout, Danielle ; Pramod, Akula Bala ; Dahal, Rejwi Acharya ; Tomlinson, Michael J. ; Sharma, Babita ; Foster, James D. ; Zou, Mu-Fa ; Boatang, Comfort ; Newman, Amy Hauck ; Lever, John R. ; Vaughan, Roxanne A. ; Henry, L. Keith</creatorcontrib><description>[Display omitted] Dopamine transporter (DAT) blockers like cocaine and many other abused and therapeutic drugs bind and stabilize an inactive form of the transporter inhibiting reuptake of extracellular dopamine (DA). The resulting increases in DA lead to the ability of these drugs to induce psychomotor alterations and addiction, but paradoxical findings in animal models indicate that not all DAT antagonists induce cocaine-like behavioral outcomes. How this occurs is not known, but one possibility is that uptake inhibitors may bind at multiple locations or in different poses to stabilize distinct conformational transporter states associated with differential neurochemical endpoints. Understanding the molecular mechanisms governing the pharmacological inhibition of DAT is therefore key for understanding the requisite interactions for behavioral modulation and addiction. Previously, we leveraged complementary computational docking, mutagenesis, peptide mapping, and substituted cysteine accessibility strategies to identify the specific adduction site and binding pose for the crosslinkable, photoactive cocaine analog, RTI 82, which contains a photoactive azide attached at the 2β position of the tropane pharmacophore. Here, we utilize similar methodology with a different cocaine analog N-[4-(4-azido-3-I-iodophenyl)-butyl]-2-carbomethoxy-3-(4-chlorophenyl)tropane, MFZ 2–24, where the photoactive azide is attached to the tropane nitrogen. In contrast to RTI 82, which crosslinked into residue Phe319 of transmembrane domain (TM) 6, our findings show that MFZ 2–24 adducts to Leu80 in TM1 with modeling and biochemical data indicating that MFZ 2–24, like RTI 82, occupies the central S1 binding pocket with the (+)-charged tropane ring nitrogen coordinating with the (−)-charged carboxyl side chain of Asp79. The superimposition of the tropane ring in the three-dimensional binding poses of these two distinct ligands provides strong experimental evidence for cocaine binding to DAT in the S1 site and the importance of the tropane moiety in competitive mechanisms of DA uptake inhibition. These findings set a structure-function baseline for comparison of typical and atypical DAT inhibitors and how their interactions with DAT could lead to the loss of cocaine-like behaviors.</description><identifier>ISSN: 0006-2952</identifier><identifier>EISSN: 1873-2968</identifier><identifier>DOI: 10.1016/j.bcp.2017.07.015</identifier><identifier>PMID: 28734777</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Addiction ; Animals ; Azides - chemistry ; Azides - metabolism ; Binding Sites ; Cocaine ; Cocaine - analogs &amp; derivatives ; Cocaine - chemistry ; Cocaine - metabolism ; Computational modeling ; Cross-Linking Reagents - chemistry ; Cross-Linking Reagents - metabolism ; Dopamine Plasma Membrane Transport Proteins - antagonists &amp; inhibitors ; Dopamine Plasma Membrane Transport Proteins - chemistry ; Dopamine transporter ; Iodine Radioisotopes ; Ligands ; LLC-PK1 Cells ; Molecular Docking Simulation ; Molecular Dynamics Simulation ; Molecular Structure ; Mutant Proteins - chemistry ; Mutant Proteins - metabolism ; Peptide Mapping ; Photoaffinity labeling ; Photoaffinity Labels ; Protein Binding ; Structure-Activity Relationship ; Substance-Related Disorders - metabolism ; Substance-Related Disorders - psychology ; Swine ; Tropanes - chemistry ; Tropanes - metabolism</subject><ispartof>Biochemical pharmacology, 2017-10, Vol.142, p.204-215</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d7f5f1af1bfaa89dfe7e3463d1b2d5013c59a549ced741d16e96322a714ee0b63</citedby><cites>FETCH-LOGICAL-c451t-d7f5f1af1bfaa89dfe7e3463d1b2d5013c59a549ced741d16e96322a714ee0b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bcp.2017.07.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28734777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krout, Danielle</creatorcontrib><creatorcontrib>Pramod, Akula Bala</creatorcontrib><creatorcontrib>Dahal, Rejwi Acharya</creatorcontrib><creatorcontrib>Tomlinson, Michael J.</creatorcontrib><creatorcontrib>Sharma, Babita</creatorcontrib><creatorcontrib>Foster, James D.</creatorcontrib><creatorcontrib>Zou, Mu-Fa</creatorcontrib><creatorcontrib>Boatang, Comfort</creatorcontrib><creatorcontrib>Newman, Amy Hauck</creatorcontrib><creatorcontrib>Lever, John R.</creatorcontrib><creatorcontrib>Vaughan, Roxanne A.</creatorcontrib><creatorcontrib>Henry, L. Keith</creatorcontrib><title>Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs</title><title>Biochemical pharmacology</title><addtitle>Biochem Pharmacol</addtitle><description>[Display omitted] Dopamine transporter (DAT) blockers like cocaine and many other abused and therapeutic drugs bind and stabilize an inactive form of the transporter inhibiting reuptake of extracellular dopamine (DA). The resulting increases in DA lead to the ability of these drugs to induce psychomotor alterations and addiction, but paradoxical findings in animal models indicate that not all DAT antagonists induce cocaine-like behavioral outcomes. How this occurs is not known, but one possibility is that uptake inhibitors may bind at multiple locations or in different poses to stabilize distinct conformational transporter states associated with differential neurochemical endpoints. Understanding the molecular mechanisms governing the pharmacological inhibition of DAT is therefore key for understanding the requisite interactions for behavioral modulation and addiction. Previously, we leveraged complementary computational docking, mutagenesis, peptide mapping, and substituted cysteine accessibility strategies to identify the specific adduction site and binding pose for the crosslinkable, photoactive cocaine analog, RTI 82, which contains a photoactive azide attached at the 2β position of the tropane pharmacophore. Here, we utilize similar methodology with a different cocaine analog N-[4-(4-azido-3-I-iodophenyl)-butyl]-2-carbomethoxy-3-(4-chlorophenyl)tropane, MFZ 2–24, where the photoactive azide is attached to the tropane nitrogen. In contrast to RTI 82, which crosslinked into residue Phe319 of transmembrane domain (TM) 6, our findings show that MFZ 2–24 adducts to Leu80 in TM1 with modeling and biochemical data indicating that MFZ 2–24, like RTI 82, occupies the central S1 binding pocket with the (+)-charged tropane ring nitrogen coordinating with the (−)-charged carboxyl side chain of Asp79. The superimposition of the tropane ring in the three-dimensional binding poses of these two distinct ligands provides strong experimental evidence for cocaine binding to DAT in the S1 site and the importance of the tropane moiety in competitive mechanisms of DA uptake inhibition. These findings set a structure-function baseline for comparison of typical and atypical DAT inhibitors and how their interactions with DAT could lead to the loss of cocaine-like behaviors.</description><subject>Addiction</subject><subject>Animals</subject><subject>Azides - chemistry</subject><subject>Azides - metabolism</subject><subject>Binding Sites</subject><subject>Cocaine</subject><subject>Cocaine - analogs &amp; derivatives</subject><subject>Cocaine - chemistry</subject><subject>Cocaine - metabolism</subject><subject>Computational modeling</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Cross-Linking Reagents - metabolism</subject><subject>Dopamine Plasma Membrane Transport Proteins - antagonists &amp; inhibitors</subject><subject>Dopamine Plasma Membrane Transport Proteins - chemistry</subject><subject>Dopamine transporter</subject><subject>Iodine Radioisotopes</subject><subject>Ligands</subject><subject>LLC-PK1 Cells</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Structure</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - metabolism</subject><subject>Peptide Mapping</subject><subject>Photoaffinity labeling</subject><subject>Photoaffinity Labels</subject><subject>Protein Binding</subject><subject>Structure-Activity Relationship</subject><subject>Substance-Related Disorders - metabolism</subject><subject>Substance-Related Disorders - psychology</subject><subject>Swine</subject><subject>Tropanes - chemistry</subject><subject>Tropanes - metabolism</subject><issn>0006-2952</issn><issn>1873-2968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd-K1DAUxoMo7rj6AN5IXqBjTts0LYIgi38WFrxQr0OanEwztElJMgP7Fj6y6Y4ueiMcSM7J-X7h4yPkNbA9MOjeHvejXvc1A7FnpYA_ITvoRVPVQ9c_JTvGWFfuvL4iL1I6bm3fwXNyVZelVgixIz9v_eRGl0OkC-pJeZeWRJ2neUL6DejovHH-QJPLSIN9GJuwqsV5pDkqn9YQM0Zq0JaRoeM9XU5zdtWDYgkz6tOsIs1YpHFDFco6hRyUzu6MVAetNpjyag6H9JI8s2pO-Or3eU1-fPr4_eZLdff18-3Nh7tKtxxyZYTlFpSF0SrVD8aiwKbtGgNjbTiDRvNB8XbQaEQLBjocuqaulYAWkY1dc03eX7jraVzQaPTFzSzX6BYV72VQTv774t0kD-Es-1ZwwesCgAtAx5BSRPuoBSa3eORRlnjkFo9kpYAXzZu_P31U_MmjLLy7LGCxfnYYZdIOfXHhIuosTXD_wf8C6Xul2Q</recordid><startdate>20171015</startdate><enddate>20171015</enddate><creator>Krout, Danielle</creator><creator>Pramod, Akula Bala</creator><creator>Dahal, Rejwi Acharya</creator><creator>Tomlinson, Michael J.</creator><creator>Sharma, Babita</creator><creator>Foster, James D.</creator><creator>Zou, Mu-Fa</creator><creator>Boatang, Comfort</creator><creator>Newman, Amy Hauck</creator><creator>Lever, John R.</creator><creator>Vaughan, Roxanne A.</creator><creator>Henry, L. Keith</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20171015</creationdate><title>Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs</title><author>Krout, Danielle ; Pramod, Akula Bala ; Dahal, Rejwi Acharya ; Tomlinson, Michael J. ; Sharma, Babita ; Foster, James D. ; Zou, Mu-Fa ; Boatang, Comfort ; Newman, Amy Hauck ; Lever, John R. ; Vaughan, Roxanne A. ; Henry, L. Keith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d7f5f1af1bfaa89dfe7e3463d1b2d5013c59a549ced741d16e96322a714ee0b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Addiction</topic><topic>Animals</topic><topic>Azides - chemistry</topic><topic>Azides - metabolism</topic><topic>Binding Sites</topic><topic>Cocaine</topic><topic>Cocaine - analogs &amp; derivatives</topic><topic>Cocaine - chemistry</topic><topic>Cocaine - metabolism</topic><topic>Computational modeling</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Cross-Linking Reagents - metabolism</topic><topic>Dopamine Plasma Membrane Transport Proteins - antagonists &amp; inhibitors</topic><topic>Dopamine Plasma Membrane Transport Proteins - chemistry</topic><topic>Dopamine transporter</topic><topic>Iodine Radioisotopes</topic><topic>Ligands</topic><topic>LLC-PK1 Cells</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Structure</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - metabolism</topic><topic>Peptide Mapping</topic><topic>Photoaffinity labeling</topic><topic>Photoaffinity Labels</topic><topic>Protein Binding</topic><topic>Structure-Activity Relationship</topic><topic>Substance-Related Disorders - metabolism</topic><topic>Substance-Related Disorders - psychology</topic><topic>Swine</topic><topic>Tropanes - chemistry</topic><topic>Tropanes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krout, Danielle</creatorcontrib><creatorcontrib>Pramod, Akula Bala</creatorcontrib><creatorcontrib>Dahal, Rejwi Acharya</creatorcontrib><creatorcontrib>Tomlinson, Michael J.</creatorcontrib><creatorcontrib>Sharma, Babita</creatorcontrib><creatorcontrib>Foster, James D.</creatorcontrib><creatorcontrib>Zou, Mu-Fa</creatorcontrib><creatorcontrib>Boatang, Comfort</creatorcontrib><creatorcontrib>Newman, Amy Hauck</creatorcontrib><creatorcontrib>Lever, John R.</creatorcontrib><creatorcontrib>Vaughan, Roxanne A.</creatorcontrib><creatorcontrib>Henry, L. Keith</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krout, Danielle</au><au>Pramod, Akula Bala</au><au>Dahal, Rejwi Acharya</au><au>Tomlinson, Michael J.</au><au>Sharma, Babita</au><au>Foster, James D.</au><au>Zou, Mu-Fa</au><au>Boatang, Comfort</au><au>Newman, Amy Hauck</au><au>Lever, John R.</au><au>Vaughan, Roxanne A.</au><au>Henry, L. Keith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs</atitle><jtitle>Biochemical pharmacology</jtitle><addtitle>Biochem Pharmacol</addtitle><date>2017-10-15</date><risdate>2017</risdate><volume>142</volume><spage>204</spage><epage>215</epage><pages>204-215</pages><issn>0006-2952</issn><eissn>1873-2968</eissn><abstract>[Display omitted] Dopamine transporter (DAT) blockers like cocaine and many other abused and therapeutic drugs bind and stabilize an inactive form of the transporter inhibiting reuptake of extracellular dopamine (DA). The resulting increases in DA lead to the ability of these drugs to induce psychomotor alterations and addiction, but paradoxical findings in animal models indicate that not all DAT antagonists induce cocaine-like behavioral outcomes. How this occurs is not known, but one possibility is that uptake inhibitors may bind at multiple locations or in different poses to stabilize distinct conformational transporter states associated with differential neurochemical endpoints. Understanding the molecular mechanisms governing the pharmacological inhibition of DAT is therefore key for understanding the requisite interactions for behavioral modulation and addiction. Previously, we leveraged complementary computational docking, mutagenesis, peptide mapping, and substituted cysteine accessibility strategies to identify the specific adduction site and binding pose for the crosslinkable, photoactive cocaine analog, RTI 82, which contains a photoactive azide attached at the 2β position of the tropane pharmacophore. Here, we utilize similar methodology with a different cocaine analog N-[4-(4-azido-3-I-iodophenyl)-butyl]-2-carbomethoxy-3-(4-chlorophenyl)tropane, MFZ 2–24, where the photoactive azide is attached to the tropane nitrogen. In contrast to RTI 82, which crosslinked into residue Phe319 of transmembrane domain (TM) 6, our findings show that MFZ 2–24 adducts to Leu80 in TM1 with modeling and biochemical data indicating that MFZ 2–24, like RTI 82, occupies the central S1 binding pocket with the (+)-charged tropane ring nitrogen coordinating with the (−)-charged carboxyl side chain of Asp79. The superimposition of the tropane ring in the three-dimensional binding poses of these two distinct ligands provides strong experimental evidence for cocaine binding to DAT in the S1 site and the importance of the tropane moiety in competitive mechanisms of DA uptake inhibition. These findings set a structure-function baseline for comparison of typical and atypical DAT inhibitors and how their interactions with DAT could lead to the loss of cocaine-like behaviors.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>28734777</pmid><doi>10.1016/j.bcp.2017.07.015</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2952
ispartof Biochemical pharmacology, 2017-10, Vol.142, p.204-215
issn 0006-2952
1873-2968
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8475752
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Addiction
Animals
Azides - chemistry
Azides - metabolism
Binding Sites
Cocaine
Cocaine - analogs & derivatives
Cocaine - chemistry
Cocaine - metabolism
Computational modeling
Cross-Linking Reagents - chemistry
Cross-Linking Reagents - metabolism
Dopamine Plasma Membrane Transport Proteins - antagonists & inhibitors
Dopamine Plasma Membrane Transport Proteins - chemistry
Dopamine transporter
Iodine Radioisotopes
Ligands
LLC-PK1 Cells
Molecular Docking Simulation
Molecular Dynamics Simulation
Molecular Structure
Mutant Proteins - chemistry
Mutant Proteins - metabolism
Peptide Mapping
Photoaffinity labeling
Photoaffinity Labels
Protein Binding
Structure-Activity Relationship
Substance-Related Disorders - metabolism
Substance-Related Disorders - psychology
Swine
Tropanes - chemistry
Tropanes - metabolism
title Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibitor%20mechanisms%20in%20the%20S1%20binding%20site%20of%20the%20dopamine%20transporter%20defined%20by%20multi-site%20molecular%20tethering%20of%20photoactive%20cocaine%20analogs&rft.jtitle=Biochemical%20pharmacology&rft.au=Krout,%20Danielle&rft.date=2017-10-15&rft.volume=142&rft.spage=204&rft.epage=215&rft.pages=204-215&rft.issn=0006-2952&rft.eissn=1873-2968&rft_id=info:doi/10.1016/j.bcp.2017.07.015&rft_dat=%3Cpubmed_cross%3E28734777%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28734777&rft_els_id=S0006295217304926&rfr_iscdi=true