Bioorthogonal chemistry

Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsicall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Reviews Methods Primers 2021-01, Vol.1 (1), Article 30
Hauptverfasser: Scinto, Samuel L, Bilodeau, Didier A, Hincapie, Robert, Lee, Wankyu, Nguyen, Sean S, Xu, Minghao, Am Ende, Christopher W, Finn, M G, Lang, Kathrin, Lin, Qing, Pezacki, John Paul, Prescher, Jennifer A, Robillard, Marc S, Fox, Joseph M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Nature Reviews Methods Primers
container_volume 1
creator Scinto, Samuel L
Bilodeau, Didier A
Hincapie, Robert
Lee, Wankyu
Nguyen, Sean S
Xu, Minghao
Am Ende, Christopher W
Finn, M G
Lang, Kathrin
Lin, Qing
Pezacki, John Paul
Prescher, Jennifer A
Robillard, Marc S
Fox, Joseph M
description Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine.
doi_str_mv 10.1038/s43586-021-00028-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8469592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577730604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-43f81910fffc779b36c7af31efc8bcb1678e036313403381f14208562a1831573</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMottSeBQ_i0ctqJpOvvQha_IKCFz2HbEzalW1Tk63Q_vVubS16moF582bej5AzoFdAUV9njkLLgjIoKKVMF-sD0mdSskJzXh7-6XtkmPPHRiQAqeTHpIdcaAEc--T0ro4xtdM4iXPbXLipn9W5TasTchRsk_1wVwfk7eH-dfRUjF8en0e348JxytqCY9BQAg0hOKXKCqVTNiD44HTlKpBKe4oSATlF1BCAM6qFZBY0glA4IDdb38Wymvl35-dtso1ZpHpm08pEW5v_k3k9NZP4ZTSXpShZZ3C5M0jxc-lza7oAzjeNnfu4zIYJpVQXm_JOyrZSl2LOyYf9GaBmA9VsoZoOqvmBatbd0vnfB_crvwjxG6drcRs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577730604</pqid></control><display><type>article</type><title>Bioorthogonal chemistry</title><source>SpringerLink Journals - AutoHoldings</source><creator>Scinto, Samuel L ; Bilodeau, Didier A ; Hincapie, Robert ; Lee, Wankyu ; Nguyen, Sean S ; Xu, Minghao ; Am Ende, Christopher W ; Finn, M G ; Lang, Kathrin ; Lin, Qing ; Pezacki, John Paul ; Prescher, Jennifer A ; Robillard, Marc S ; Fox, Joseph M</creator><creatorcontrib>Scinto, Samuel L ; Bilodeau, Didier A ; Hincapie, Robert ; Lee, Wankyu ; Nguyen, Sean S ; Xu, Minghao ; Am Ende, Christopher W ; Finn, M G ; Lang, Kathrin ; Lin, Qing ; Pezacki, John Paul ; Prescher, Jennifer A ; Robillard, Marc S ; Fox, Joseph M</creatorcontrib><description>Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine.</description><identifier>ISSN: 2662-8449</identifier><identifier>EISSN: 2662-8449</identifier><identifier>DOI: 10.1038/s43586-021-00028-z</identifier><identifier>PMID: 34585143</identifier><language>eng</language><publisher>England</publisher><ispartof>Nature Reviews Methods Primers, 2021-01, Vol.1 (1), Article 30</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-43f81910fffc779b36c7af31efc8bcb1678e036313403381f14208562a1831573</citedby><cites>FETCH-LOGICAL-c402t-43f81910fffc779b36c7af31efc8bcb1678e036313403381f14208562a1831573</cites><orcidid>0000-0002-9196-5718 ; 0000-0001-9048-6398 ; 0000-0002-1318-6567 ; 0000-0001-7358-4543 ; 0000-0001-8247-3108 ; 0000-0002-8258-1640 ; 0000-0002-1801-5521 ; 0000-0002-7684-4926 ; 0000-0002-9250-4702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34585143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scinto, Samuel L</creatorcontrib><creatorcontrib>Bilodeau, Didier A</creatorcontrib><creatorcontrib>Hincapie, Robert</creatorcontrib><creatorcontrib>Lee, Wankyu</creatorcontrib><creatorcontrib>Nguyen, Sean S</creatorcontrib><creatorcontrib>Xu, Minghao</creatorcontrib><creatorcontrib>Am Ende, Christopher W</creatorcontrib><creatorcontrib>Finn, M G</creatorcontrib><creatorcontrib>Lang, Kathrin</creatorcontrib><creatorcontrib>Lin, Qing</creatorcontrib><creatorcontrib>Pezacki, John Paul</creatorcontrib><creatorcontrib>Prescher, Jennifer A</creatorcontrib><creatorcontrib>Robillard, Marc S</creatorcontrib><creatorcontrib>Fox, Joseph M</creatorcontrib><title>Bioorthogonal chemistry</title><title>Nature Reviews Methods Primers</title><addtitle>Nat Rev Methods Primers</addtitle><description>Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine.</description><issn>2662-8449</issn><issn>2662-8449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LAzEQxYMottSeBQ_i0ctqJpOvvQha_IKCFz2HbEzalW1Tk63Q_vVubS16moF582bej5AzoFdAUV9njkLLgjIoKKVMF-sD0mdSskJzXh7-6XtkmPPHRiQAqeTHpIdcaAEc--T0ro4xtdM4iXPbXLipn9W5TasTchRsk_1wVwfk7eH-dfRUjF8en0e348JxytqCY9BQAg0hOKXKCqVTNiD44HTlKpBKe4oSATlF1BCAM6qFZBY0glA4IDdb38Wymvl35-dtso1ZpHpm08pEW5v_k3k9NZP4ZTSXpShZZ3C5M0jxc-lza7oAzjeNnfu4zIYJpVQXm_JOyrZSl2LOyYf9GaBmA9VsoZoOqvmBatbd0vnfB_crvwjxG6drcRs</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Scinto, Samuel L</creator><creator>Bilodeau, Didier A</creator><creator>Hincapie, Robert</creator><creator>Lee, Wankyu</creator><creator>Nguyen, Sean S</creator><creator>Xu, Minghao</creator><creator>Am Ende, Christopher W</creator><creator>Finn, M G</creator><creator>Lang, Kathrin</creator><creator>Lin, Qing</creator><creator>Pezacki, John Paul</creator><creator>Prescher, Jennifer A</creator><creator>Robillard, Marc S</creator><creator>Fox, Joseph M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9196-5718</orcidid><orcidid>https://orcid.org/0000-0001-9048-6398</orcidid><orcidid>https://orcid.org/0000-0002-1318-6567</orcidid><orcidid>https://orcid.org/0000-0001-7358-4543</orcidid><orcidid>https://orcid.org/0000-0001-8247-3108</orcidid><orcidid>https://orcid.org/0000-0002-8258-1640</orcidid><orcidid>https://orcid.org/0000-0002-1801-5521</orcidid><orcidid>https://orcid.org/0000-0002-7684-4926</orcidid><orcidid>https://orcid.org/0000-0002-9250-4702</orcidid></search><sort><creationdate>20210101</creationdate><title>Bioorthogonal chemistry</title><author>Scinto, Samuel L ; Bilodeau, Didier A ; Hincapie, Robert ; Lee, Wankyu ; Nguyen, Sean S ; Xu, Minghao ; Am Ende, Christopher W ; Finn, M G ; Lang, Kathrin ; Lin, Qing ; Pezacki, John Paul ; Prescher, Jennifer A ; Robillard, Marc S ; Fox, Joseph M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-43f81910fffc779b36c7af31efc8bcb1678e036313403381f14208562a1831573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scinto, Samuel L</creatorcontrib><creatorcontrib>Bilodeau, Didier A</creatorcontrib><creatorcontrib>Hincapie, Robert</creatorcontrib><creatorcontrib>Lee, Wankyu</creatorcontrib><creatorcontrib>Nguyen, Sean S</creatorcontrib><creatorcontrib>Xu, Minghao</creatorcontrib><creatorcontrib>Am Ende, Christopher W</creatorcontrib><creatorcontrib>Finn, M G</creatorcontrib><creatorcontrib>Lang, Kathrin</creatorcontrib><creatorcontrib>Lin, Qing</creatorcontrib><creatorcontrib>Pezacki, John Paul</creatorcontrib><creatorcontrib>Prescher, Jennifer A</creatorcontrib><creatorcontrib>Robillard, Marc S</creatorcontrib><creatorcontrib>Fox, Joseph M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature Reviews Methods Primers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scinto, Samuel L</au><au>Bilodeau, Didier A</au><au>Hincapie, Robert</au><au>Lee, Wankyu</au><au>Nguyen, Sean S</au><au>Xu, Minghao</au><au>Am Ende, Christopher W</au><au>Finn, M G</au><au>Lang, Kathrin</au><au>Lin, Qing</au><au>Pezacki, John Paul</au><au>Prescher, Jennifer A</au><au>Robillard, Marc S</au><au>Fox, Joseph M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioorthogonal chemistry</atitle><jtitle>Nature Reviews Methods Primers</jtitle><addtitle>Nat Rev Methods Primers</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>1</volume><issue>1</issue><artnum>30</artnum><issn>2662-8449</issn><eissn>2662-8449</eissn><abstract>Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine.</abstract><cop>England</cop><pmid>34585143</pmid><doi>10.1038/s43586-021-00028-z</doi><orcidid>https://orcid.org/0000-0002-9196-5718</orcidid><orcidid>https://orcid.org/0000-0001-9048-6398</orcidid><orcidid>https://orcid.org/0000-0002-1318-6567</orcidid><orcidid>https://orcid.org/0000-0001-7358-4543</orcidid><orcidid>https://orcid.org/0000-0001-8247-3108</orcidid><orcidid>https://orcid.org/0000-0002-8258-1640</orcidid><orcidid>https://orcid.org/0000-0002-1801-5521</orcidid><orcidid>https://orcid.org/0000-0002-7684-4926</orcidid><orcidid>https://orcid.org/0000-0002-9250-4702</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2662-8449
ispartof Nature Reviews Methods Primers, 2021-01, Vol.1 (1), Article 30
issn 2662-8449
2662-8449
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8469592
source SpringerLink Journals - AutoHoldings
title Bioorthogonal chemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioorthogonal%20chemistry&rft.jtitle=Nature%20Reviews%20Methods%20Primers&rft.au=Scinto,%20Samuel%20L&rft.date=2021-01-01&rft.volume=1&rft.issue=1&rft.artnum=30&rft.issn=2662-8449&rft.eissn=2662-8449&rft_id=info:doi/10.1038/s43586-021-00028-z&rft_dat=%3Cproquest_pubme%3E2577730604%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577730604&rft_id=info:pmid/34585143&rfr_iscdi=true