Bioorthogonal chemistry
Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsicall...
Gespeichert in:
Veröffentlicht in: | Nature Reviews Methods Primers 2021-01, Vol.1 (1), Article 30 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Nature Reviews Methods Primers |
container_volume | 1 |
creator | Scinto, Samuel L Bilodeau, Didier A Hincapie, Robert Lee, Wankyu Nguyen, Sean S Xu, Minghao Am Ende, Christopher W Finn, M G Lang, Kathrin Lin, Qing Pezacki, John Paul Prescher, Jennifer A Robillard, Marc S Fox, Joseph M |
description | Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine. |
doi_str_mv | 10.1038/s43586-021-00028-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8469592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577730604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-43f81910fffc779b36c7af31efc8bcb1678e036313403381f14208562a1831573</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMottSeBQ_i0ctqJpOvvQha_IKCFz2HbEzalW1Tk63Q_vVubS16moF582bej5AzoFdAUV9njkLLgjIoKKVMF-sD0mdSskJzXh7-6XtkmPPHRiQAqeTHpIdcaAEc--T0ro4xtdM4iXPbXLipn9W5TasTchRsk_1wVwfk7eH-dfRUjF8en0e348JxytqCY9BQAg0hOKXKCqVTNiD44HTlKpBKe4oSATlF1BCAM6qFZBY0glA4IDdb38Wymvl35-dtso1ZpHpm08pEW5v_k3k9NZP4ZTSXpShZZ3C5M0jxc-lza7oAzjeNnfu4zIYJpVQXm_JOyrZSl2LOyYf9GaBmA9VsoZoOqvmBatbd0vnfB_crvwjxG6drcRs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577730604</pqid></control><display><type>article</type><title>Bioorthogonal chemistry</title><source>SpringerLink Journals - AutoHoldings</source><creator>Scinto, Samuel L ; Bilodeau, Didier A ; Hincapie, Robert ; Lee, Wankyu ; Nguyen, Sean S ; Xu, Minghao ; Am Ende, Christopher W ; Finn, M G ; Lang, Kathrin ; Lin, Qing ; Pezacki, John Paul ; Prescher, Jennifer A ; Robillard, Marc S ; Fox, Joseph M</creator><creatorcontrib>Scinto, Samuel L ; Bilodeau, Didier A ; Hincapie, Robert ; Lee, Wankyu ; Nguyen, Sean S ; Xu, Minghao ; Am Ende, Christopher W ; Finn, M G ; Lang, Kathrin ; Lin, Qing ; Pezacki, John Paul ; Prescher, Jennifer A ; Robillard, Marc S ; Fox, Joseph M</creatorcontrib><description>Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine.</description><identifier>ISSN: 2662-8449</identifier><identifier>EISSN: 2662-8449</identifier><identifier>DOI: 10.1038/s43586-021-00028-z</identifier><identifier>PMID: 34585143</identifier><language>eng</language><publisher>England</publisher><ispartof>Nature Reviews Methods Primers, 2021-01, Vol.1 (1), Article 30</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-43f81910fffc779b36c7af31efc8bcb1678e036313403381f14208562a1831573</citedby><cites>FETCH-LOGICAL-c402t-43f81910fffc779b36c7af31efc8bcb1678e036313403381f14208562a1831573</cites><orcidid>0000-0002-9196-5718 ; 0000-0001-9048-6398 ; 0000-0002-1318-6567 ; 0000-0001-7358-4543 ; 0000-0001-8247-3108 ; 0000-0002-8258-1640 ; 0000-0002-1801-5521 ; 0000-0002-7684-4926 ; 0000-0002-9250-4702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34585143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scinto, Samuel L</creatorcontrib><creatorcontrib>Bilodeau, Didier A</creatorcontrib><creatorcontrib>Hincapie, Robert</creatorcontrib><creatorcontrib>Lee, Wankyu</creatorcontrib><creatorcontrib>Nguyen, Sean S</creatorcontrib><creatorcontrib>Xu, Minghao</creatorcontrib><creatorcontrib>Am Ende, Christopher W</creatorcontrib><creatorcontrib>Finn, M G</creatorcontrib><creatorcontrib>Lang, Kathrin</creatorcontrib><creatorcontrib>Lin, Qing</creatorcontrib><creatorcontrib>Pezacki, John Paul</creatorcontrib><creatorcontrib>Prescher, Jennifer A</creatorcontrib><creatorcontrib>Robillard, Marc S</creatorcontrib><creatorcontrib>Fox, Joseph M</creatorcontrib><title>Bioorthogonal chemistry</title><title>Nature Reviews Methods Primers</title><addtitle>Nat Rev Methods Primers</addtitle><description>Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine.</description><issn>2662-8449</issn><issn>2662-8449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LAzEQxYMottSeBQ_i0ctqJpOvvQha_IKCFz2HbEzalW1Tk63Q_vVubS16moF582bej5AzoFdAUV9njkLLgjIoKKVMF-sD0mdSskJzXh7-6XtkmPPHRiQAqeTHpIdcaAEc--T0ro4xtdM4iXPbXLipn9W5TasTchRsk_1wVwfk7eH-dfRUjF8en0e348JxytqCY9BQAg0hOKXKCqVTNiD44HTlKpBKe4oSATlF1BCAM6qFZBY0glA4IDdb38Wymvl35-dtso1ZpHpm08pEW5v_k3k9NZP4ZTSXpShZZ3C5M0jxc-lza7oAzjeNnfu4zIYJpVQXm_JOyrZSl2LOyYf9GaBmA9VsoZoOqvmBatbd0vnfB_crvwjxG6drcRs</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Scinto, Samuel L</creator><creator>Bilodeau, Didier A</creator><creator>Hincapie, Robert</creator><creator>Lee, Wankyu</creator><creator>Nguyen, Sean S</creator><creator>Xu, Minghao</creator><creator>Am Ende, Christopher W</creator><creator>Finn, M G</creator><creator>Lang, Kathrin</creator><creator>Lin, Qing</creator><creator>Pezacki, John Paul</creator><creator>Prescher, Jennifer A</creator><creator>Robillard, Marc S</creator><creator>Fox, Joseph M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9196-5718</orcidid><orcidid>https://orcid.org/0000-0001-9048-6398</orcidid><orcidid>https://orcid.org/0000-0002-1318-6567</orcidid><orcidid>https://orcid.org/0000-0001-7358-4543</orcidid><orcidid>https://orcid.org/0000-0001-8247-3108</orcidid><orcidid>https://orcid.org/0000-0002-8258-1640</orcidid><orcidid>https://orcid.org/0000-0002-1801-5521</orcidid><orcidid>https://orcid.org/0000-0002-7684-4926</orcidid><orcidid>https://orcid.org/0000-0002-9250-4702</orcidid></search><sort><creationdate>20210101</creationdate><title>Bioorthogonal chemistry</title><author>Scinto, Samuel L ; Bilodeau, Didier A ; Hincapie, Robert ; Lee, Wankyu ; Nguyen, Sean S ; Xu, Minghao ; Am Ende, Christopher W ; Finn, M G ; Lang, Kathrin ; Lin, Qing ; Pezacki, John Paul ; Prescher, Jennifer A ; Robillard, Marc S ; Fox, Joseph M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-43f81910fffc779b36c7af31efc8bcb1678e036313403381f14208562a1831573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scinto, Samuel L</creatorcontrib><creatorcontrib>Bilodeau, Didier A</creatorcontrib><creatorcontrib>Hincapie, Robert</creatorcontrib><creatorcontrib>Lee, Wankyu</creatorcontrib><creatorcontrib>Nguyen, Sean S</creatorcontrib><creatorcontrib>Xu, Minghao</creatorcontrib><creatorcontrib>Am Ende, Christopher W</creatorcontrib><creatorcontrib>Finn, M G</creatorcontrib><creatorcontrib>Lang, Kathrin</creatorcontrib><creatorcontrib>Lin, Qing</creatorcontrib><creatorcontrib>Pezacki, John Paul</creatorcontrib><creatorcontrib>Prescher, Jennifer A</creatorcontrib><creatorcontrib>Robillard, Marc S</creatorcontrib><creatorcontrib>Fox, Joseph M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature Reviews Methods Primers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scinto, Samuel L</au><au>Bilodeau, Didier A</au><au>Hincapie, Robert</au><au>Lee, Wankyu</au><au>Nguyen, Sean S</au><au>Xu, Minghao</au><au>Am Ende, Christopher W</au><au>Finn, M G</au><au>Lang, Kathrin</au><au>Lin, Qing</au><au>Pezacki, John Paul</au><au>Prescher, Jennifer A</au><au>Robillard, Marc S</au><au>Fox, Joseph M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioorthogonal chemistry</atitle><jtitle>Nature Reviews Methods Primers</jtitle><addtitle>Nat Rev Methods Primers</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>1</volume><issue>1</issue><artnum>30</artnum><issn>2662-8449</issn><eissn>2662-8449</eissn><abstract>Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine.</abstract><cop>England</cop><pmid>34585143</pmid><doi>10.1038/s43586-021-00028-z</doi><orcidid>https://orcid.org/0000-0002-9196-5718</orcidid><orcidid>https://orcid.org/0000-0001-9048-6398</orcidid><orcidid>https://orcid.org/0000-0002-1318-6567</orcidid><orcidid>https://orcid.org/0000-0001-7358-4543</orcidid><orcidid>https://orcid.org/0000-0001-8247-3108</orcidid><orcidid>https://orcid.org/0000-0002-8258-1640</orcidid><orcidid>https://orcid.org/0000-0002-1801-5521</orcidid><orcidid>https://orcid.org/0000-0002-7684-4926</orcidid><orcidid>https://orcid.org/0000-0002-9250-4702</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-8449 |
ispartof | Nature Reviews Methods Primers, 2021-01, Vol.1 (1), Article 30 |
issn | 2662-8449 2662-8449 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8469592 |
source | SpringerLink Journals - AutoHoldings |
title | Bioorthogonal chemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioorthogonal%20chemistry&rft.jtitle=Nature%20Reviews%20Methods%20Primers&rft.au=Scinto,%20Samuel%20L&rft.date=2021-01-01&rft.volume=1&rft.issue=1&rft.artnum=30&rft.issn=2662-8449&rft.eissn=2662-8449&rft_id=info:doi/10.1038/s43586-021-00028-z&rft_dat=%3Cproquest_pubme%3E2577730604%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577730604&rft_id=info:pmid/34585143&rfr_iscdi=true |