Discriminating Clonotypes of Influenza A Virus Genes by Nanopore Sequencing
Influenza viruses still pose a serious threat to humans, and we have not yet been able to effectively predict future pandemic strains and prepare vaccines in advance. One of the main reasons is the high genetic diversity of influenza viruses. We do not know the individual clonotypes of a virus popul...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2021-09, Vol.22 (18), p.10069 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | 10069 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Cao, Ying Liu, Haizhou Yan, Yi Liu, Wenjun Liu, Di Li, Jing |
description | Influenza viruses still pose a serious threat to humans, and we have not yet been able to effectively predict future pandemic strains and prepare vaccines in advance. One of the main reasons is the high genetic diversity of influenza viruses. We do not know the individual clonotypes of a virus population because some are the majority and others make up only a small fraction of the population. First-generation (FGS) and next-generation sequencing (NGS) technologies have inherent limitations that are unable to resolve a minority clonotype’s information in the virus population. Third-generation sequencing (TGS) technologies with ultra-long reads have the potential to solve this problem but have a high error rate. Here, we evaluated emerging direct RNA sequencing and cDNA sequencing with the MinION platform and established a novel approach that combines the high accuracy of Illumina sequencing technology and long reads of nanopore sequencing technology to resolve both variants and clonotypes of influenza virus. Furthermore, a new program was written to eliminate the effect of nanopore sequencing errors for the analysis of the results. By using this pipeline, we identified 47 clonotypes in our experiment. We conclude that this approach can quickly discriminate the clonotypes of virus genes, allowing researchers to understand virus adaptation and evolution at the population level. |
doi_str_mv | 10.3390/ijms221810069 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8468007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577451573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-734a9d7dd5d300b7c4d28546e3419c24fe5f477a6fb62d22feb2c53a1b6edd523</originalsourceid><addsrcrecordid>eNpdkc1Lw0AQxRdRbK0evQe8eIluZr-Si1Cq1mLRgx_XZZNsakqyW3cTof71bmkR62kG5jePefMQOk_wFSEZvq6XrQdI0gRjnh2gYUIB4tCLwz_9AJ14v8QYCLDsGA0IZYIDwUP0eFv7wtVtbVRXm0U0aayx3XqlfWSraGaqptfmW0Xj6L12vY-m2oRRvo6elLEr63T0oj8DUoTlU3RUqcbrs10dobf7u9fJQzx_ns4m43lckAy6WBCqslKUJSsJxrkoaAkpo1wTmmQF0EqzigqheJVzKAEqnUPBiEpyrsMSkBG62equ-rzVZaFN51QjV8GGcmtpVS33J6b-kAv7JVPKU4xFELjcCTgbjvedbMMXdNMoo23vJTAhKEuYIAG9-Icube9MsLehOCWQ0jRQ8ZYqnPXe6er3mATLTUxyLybyA4UihPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576432848</pqid></control><display><type>article</type><title>Discriminating Clonotypes of Influenza A Virus Genes by Nanopore Sequencing</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cao, Ying ; Liu, Haizhou ; Yan, Yi ; Liu, Wenjun ; Liu, Di ; Li, Jing</creator><creatorcontrib>Cao, Ying ; Liu, Haizhou ; Yan, Yi ; Liu, Wenjun ; Liu, Di ; Li, Jing</creatorcontrib><description>Influenza viruses still pose a serious threat to humans, and we have not yet been able to effectively predict future pandemic strains and prepare vaccines in advance. One of the main reasons is the high genetic diversity of influenza viruses. We do not know the individual clonotypes of a virus population because some are the majority and others make up only a small fraction of the population. First-generation (FGS) and next-generation sequencing (NGS) technologies have inherent limitations that are unable to resolve a minority clonotype’s information in the virus population. Third-generation sequencing (TGS) technologies with ultra-long reads have the potential to solve this problem but have a high error rate. Here, we evaluated emerging direct RNA sequencing and cDNA sequencing with the MinION platform and established a novel approach that combines the high accuracy of Illumina sequencing technology and long reads of nanopore sequencing technology to resolve both variants and clonotypes of influenza virus. Furthermore, a new program was written to eliminate the effect of nanopore sequencing errors for the analysis of the results. By using this pipeline, we identified 47 clonotypes in our experiment. We conclude that this approach can quickly discriminate the clonotypes of virus genes, allowing researchers to understand virus adaptation and evolution at the population level.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms221810069</identifier><identifier>PMID: 34576230</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ebola virus ; Epidemics ; Evolutionary genetics ; Genes ; Genetic diversity ; Genomes ; Influenza ; Influenza A ; Next-generation sequencing ; Pandemics ; Poultry ; Public health ; Viruses ; Zika virus</subject><ispartof>International journal of molecular sciences, 2021-09, Vol.22 (18), p.10069</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-734a9d7dd5d300b7c4d28546e3419c24fe5f477a6fb62d22feb2c53a1b6edd523</citedby><cites>FETCH-LOGICAL-c392t-734a9d7dd5d300b7c4d28546e3419c24fe5f477a6fb62d22feb2c53a1b6edd523</cites><orcidid>0000-0002-4289-452X ; 0000-0002-4727-088X ; 0000-0001-8195-3628 ; 0000-0001-9588-5291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468007/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468007/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Cao, Ying</creatorcontrib><creatorcontrib>Liu, Haizhou</creatorcontrib><creatorcontrib>Yan, Yi</creatorcontrib><creatorcontrib>Liu, Wenjun</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><title>Discriminating Clonotypes of Influenza A Virus Genes by Nanopore Sequencing</title><title>International journal of molecular sciences</title><description>Influenza viruses still pose a serious threat to humans, and we have not yet been able to effectively predict future pandemic strains and prepare vaccines in advance. One of the main reasons is the high genetic diversity of influenza viruses. We do not know the individual clonotypes of a virus population because some are the majority and others make up only a small fraction of the population. First-generation (FGS) and next-generation sequencing (NGS) technologies have inherent limitations that are unable to resolve a minority clonotype’s information in the virus population. Third-generation sequencing (TGS) technologies with ultra-long reads have the potential to solve this problem but have a high error rate. Here, we evaluated emerging direct RNA sequencing and cDNA sequencing with the MinION platform and established a novel approach that combines the high accuracy of Illumina sequencing technology and long reads of nanopore sequencing technology to resolve both variants and clonotypes of influenza virus. Furthermore, a new program was written to eliminate the effect of nanopore sequencing errors for the analysis of the results. By using this pipeline, we identified 47 clonotypes in our experiment. We conclude that this approach can quickly discriminate the clonotypes of virus genes, allowing researchers to understand virus adaptation and evolution at the population level.</description><subject>Ebola virus</subject><subject>Epidemics</subject><subject>Evolutionary genetics</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genomes</subject><subject>Influenza</subject><subject>Influenza A</subject><subject>Next-generation sequencing</subject><subject>Pandemics</subject><subject>Poultry</subject><subject>Public health</subject><subject>Viruses</subject><subject>Zika virus</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1Lw0AQxRdRbK0evQe8eIluZr-Si1Cq1mLRgx_XZZNsakqyW3cTof71bmkR62kG5jePefMQOk_wFSEZvq6XrQdI0gRjnh2gYUIB4tCLwz_9AJ14v8QYCLDsGA0IZYIDwUP0eFv7wtVtbVRXm0U0aayx3XqlfWSraGaqptfmW0Xj6L12vY-m2oRRvo6elLEr63T0oj8DUoTlU3RUqcbrs10dobf7u9fJQzx_ns4m43lckAy6WBCqslKUJSsJxrkoaAkpo1wTmmQF0EqzigqheJVzKAEqnUPBiEpyrsMSkBG62equ-rzVZaFN51QjV8GGcmtpVS33J6b-kAv7JVPKU4xFELjcCTgbjvedbMMXdNMoo23vJTAhKEuYIAG9-Icube9MsLehOCWQ0jRQ8ZYqnPXe6er3mATLTUxyLybyA4UihPw</recordid><startdate>20210917</startdate><enddate>20210917</enddate><creator>Cao, Ying</creator><creator>Liu, Haizhou</creator><creator>Yan, Yi</creator><creator>Liu, Wenjun</creator><creator>Liu, Di</creator><creator>Li, Jing</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4289-452X</orcidid><orcidid>https://orcid.org/0000-0002-4727-088X</orcidid><orcidid>https://orcid.org/0000-0001-8195-3628</orcidid><orcidid>https://orcid.org/0000-0001-9588-5291</orcidid></search><sort><creationdate>20210917</creationdate><title>Discriminating Clonotypes of Influenza A Virus Genes by Nanopore Sequencing</title><author>Cao, Ying ; Liu, Haizhou ; Yan, Yi ; Liu, Wenjun ; Liu, Di ; Li, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-734a9d7dd5d300b7c4d28546e3419c24fe5f477a6fb62d22feb2c53a1b6edd523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ebola virus</topic><topic>Epidemics</topic><topic>Evolutionary genetics</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genomes</topic><topic>Influenza</topic><topic>Influenza A</topic><topic>Next-generation sequencing</topic><topic>Pandemics</topic><topic>Poultry</topic><topic>Public health</topic><topic>Viruses</topic><topic>Zika virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Ying</creatorcontrib><creatorcontrib>Liu, Haizhou</creatorcontrib><creatorcontrib>Yan, Yi</creatorcontrib><creatorcontrib>Liu, Wenjun</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Ying</au><au>Liu, Haizhou</au><au>Yan, Yi</au><au>Liu, Wenjun</au><au>Liu, Di</au><au>Li, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discriminating Clonotypes of Influenza A Virus Genes by Nanopore Sequencing</atitle><jtitle>International journal of molecular sciences</jtitle><date>2021-09-17</date><risdate>2021</risdate><volume>22</volume><issue>18</issue><spage>10069</spage><pages>10069-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Influenza viruses still pose a serious threat to humans, and we have not yet been able to effectively predict future pandemic strains and prepare vaccines in advance. One of the main reasons is the high genetic diversity of influenza viruses. We do not know the individual clonotypes of a virus population because some are the majority and others make up only a small fraction of the population. First-generation (FGS) and next-generation sequencing (NGS) technologies have inherent limitations that are unable to resolve a minority clonotype’s information in the virus population. Third-generation sequencing (TGS) technologies with ultra-long reads have the potential to solve this problem but have a high error rate. Here, we evaluated emerging direct RNA sequencing and cDNA sequencing with the MinION platform and established a novel approach that combines the high accuracy of Illumina sequencing technology and long reads of nanopore sequencing technology to resolve both variants and clonotypes of influenza virus. Furthermore, a new program was written to eliminate the effect of nanopore sequencing errors for the analysis of the results. By using this pipeline, we identified 47 clonotypes in our experiment. We conclude that this approach can quickly discriminate the clonotypes of virus genes, allowing researchers to understand virus adaptation and evolution at the population level.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34576230</pmid><doi>10.3390/ijms221810069</doi><orcidid>https://orcid.org/0000-0002-4289-452X</orcidid><orcidid>https://orcid.org/0000-0002-4727-088X</orcidid><orcidid>https://orcid.org/0000-0001-8195-3628</orcidid><orcidid>https://orcid.org/0000-0001-9588-5291</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2021-09, Vol.22 (18), p.10069 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8468007 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Ebola virus Epidemics Evolutionary genetics Genes Genetic diversity Genomes Influenza Influenza A Next-generation sequencing Pandemics Poultry Public health Viruses Zika virus |
title | Discriminating Clonotypes of Influenza A Virus Genes by Nanopore Sequencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discriminating%20Clonotypes%20of%20Influenza%20A%20Virus%20Genes%20by%20Nanopore%20Sequencing&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Cao,%20Ying&rft.date=2021-09-17&rft.volume=22&rft.issue=18&rft.spage=10069&rft.pages=10069-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms221810069&rft_dat=%3Cproquest_pubme%3E2577451573%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576432848&rft_id=info:pmid/34576230&rfr_iscdi=true |