Removal of Aniline and Benzothiazole Wastewaters Using an Efficient MnO2/GAC Catalyst in a Photocatalytic Fluidised Bed Reactor

This work presents an efficient method for treating industrial wastewater containing aniline and benzothiazole, which are refractory to conventional treatments. A combination of heterogeneous photocatalysis operating in a fluidised bed reactor is studied in order to increase mass transfer and reduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-09, Vol.14 (18), p.5207
Hauptverfasser: Ferreiro, Cristian, Villota, Natalia, Lombraña, José Ignacio, Rivero, María J., Zúñiga, Verónica, Rituerto, José Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 5207
container_title Materials
container_volume 14
creator Ferreiro, Cristian
Villota, Natalia
Lombraña, José Ignacio
Rivero, María J.
Zúñiga, Verónica
Rituerto, José Miguel
description This work presents an efficient method for treating industrial wastewater containing aniline and benzothiazole, which are refractory to conventional treatments. A combination of heterogeneous photocatalysis operating in a fluidised bed reactor is studied in order to increase mass transfer and reduce reaction times. This process uses a manganese dioxide catalyst supported on granular activated carbon with environmentally friendly characteristics. The manganese dioxide composite is prepared by hydrothermal synthesis on carbon Hydrodarco® 3000 with different active phase ratios. The support, the metal oxide, and the composite are characterised by performing Brunauer, Emmett, and Teller analysis, transmission electron microscopy, X-ray diffraction analysis, X-ray fluorescence analysis, UV–Vis spectroscopy by diffuse reflectance, and Fourier transform infrared spectroscopy in order to evaluate the influence of the metal oxide on the activated carbon. A composite of MnO2/GAC (3.78% in phase α-MnO2) is obtained, with a 9.4% increase in the specific surface of the initial GAC and a 12.79 nm crystal size. The effect of pH and catalyst load is studied. At a pH of 9.0 and a dose of 0.9 g L−1, a high degradation of aniline and benzothiazole is obtained, with an 81.63% TOC mineralisation in 64.8 min.
doi_str_mv 10.3390/ma14185207
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8467099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579126621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6d5a51a6ff5585078fd2502097098213df1da689cf19225484ce6014acee86ef3</originalsourceid><addsrcrecordid>eNpdkU1LHEEQhhtJUNl4yS9oyCUENvb3dF8Cm0VNwGCQSI5D2VPttsx0m-keRS_565mNYj7qUkXVw1tvUYS85uy9lI4dDsAVt1qwZofsc-fMkjulXvxV75GDUq7ZHFJyK9wu2ZNKN0ZJt09-nuOQb6GnOdBVin1MSCF19COmh1w3ER5yj_Q7lIp3UHEs9KLEdDUz9CiE6COmSr-kM3F4slrTNVTo70ulMVGgXze5Zv-7VaOnx_0Uu1hwK97RcwRf8_iKvAzQFzx4ygtycXz0bf1peXp28nm9Ol16aWVdmk6D5mBC0Npq1tjQCc0Ecw1zVnDZBd6Bsc4H7oTQyiqPhnEFHtEaDHJBPjzq3kyXA3Z-tj1C396McYDxvs0Q238nKW7aq3zbWmXmHW4WePskMOYfE5baDrF47HtImKfSCt00SjXaihl98x96nacxzedtKceFMbPlBXn3SPkxlzJieDbDWbt9bfvntfIXqsCU3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579126621</pqid></control><display><type>article</type><title>Removal of Aniline and Benzothiazole Wastewaters Using an Efficient MnO2/GAC Catalyst in a Photocatalytic Fluidised Bed Reactor</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Ferreiro, Cristian ; Villota, Natalia ; Lombraña, José Ignacio ; Rivero, María J. ; Zúñiga, Verónica ; Rituerto, José Miguel</creator><creatorcontrib>Ferreiro, Cristian ; Villota, Natalia ; Lombraña, José Ignacio ; Rivero, María J. ; Zúñiga, Verónica ; Rituerto, José Miguel</creatorcontrib><description>This work presents an efficient method for treating industrial wastewater containing aniline and benzothiazole, which are refractory to conventional treatments. A combination of heterogeneous photocatalysis operating in a fluidised bed reactor is studied in order to increase mass transfer and reduce reaction times. This process uses a manganese dioxide catalyst supported on granular activated carbon with environmentally friendly characteristics. The manganese dioxide composite is prepared by hydrothermal synthesis on carbon Hydrodarco® 3000 with different active phase ratios. The support, the metal oxide, and the composite are characterised by performing Brunauer, Emmett, and Teller analysis, transmission electron microscopy, X-ray diffraction analysis, X-ray fluorescence analysis, UV–Vis spectroscopy by diffuse reflectance, and Fourier transform infrared spectroscopy in order to evaluate the influence of the metal oxide on the activated carbon. A composite of MnO2/GAC (3.78% in phase α-MnO2) is obtained, with a 9.4% increase in the specific surface of the initial GAC and a 12.79 nm crystal size. The effect of pH and catalyst load is studied. At a pH of 9.0 and a dose of 0.9 g L−1, a high degradation of aniline and benzothiazole is obtained, with an 81.63% TOC mineralisation in 64.8 min.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14185207</identifier><identifier>PMID: 34576439</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Activated carbon ; Adsorption ; Aniline ; Catalysts ; Efficiency ; Effluents ; Energy ; Environmental impact ; Fluidized beds ; Fourier transforms ; Hydrothermal crystal growth ; Industrial wastes ; Infrared analysis ; Infrared spectroscopy ; Light ; Manganese dioxide ; Manufacturing ; Mass transfer ; Membrane separation ; Metal oxides ; Oxidation ; Phenols ; Photocatalysis ; Pollutants ; Reactors ; Reproducibility ; Sodium ; Sulfur ; Wastewater treatment ; X ray fluorescence analysis</subject><ispartof>Materials, 2021-09, Vol.14 (18), p.5207</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6d5a51a6ff5585078fd2502097098213df1da689cf19225484ce6014acee86ef3</citedby><cites>FETCH-LOGICAL-c383t-6d5a51a6ff5585078fd2502097098213df1da689cf19225484ce6014acee86ef3</cites><orcidid>0000-0002-6931-4169 ; 0000-0002-0291-9200 ; 0000-0001-5861-2390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467099/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467099/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Ferreiro, Cristian</creatorcontrib><creatorcontrib>Villota, Natalia</creatorcontrib><creatorcontrib>Lombraña, José Ignacio</creatorcontrib><creatorcontrib>Rivero, María J.</creatorcontrib><creatorcontrib>Zúñiga, Verónica</creatorcontrib><creatorcontrib>Rituerto, José Miguel</creatorcontrib><title>Removal of Aniline and Benzothiazole Wastewaters Using an Efficient MnO2/GAC Catalyst in a Photocatalytic Fluidised Bed Reactor</title><title>Materials</title><description>This work presents an efficient method for treating industrial wastewater containing aniline and benzothiazole, which are refractory to conventional treatments. A combination of heterogeneous photocatalysis operating in a fluidised bed reactor is studied in order to increase mass transfer and reduce reaction times. This process uses a manganese dioxide catalyst supported on granular activated carbon with environmentally friendly characteristics. The manganese dioxide composite is prepared by hydrothermal synthesis on carbon Hydrodarco® 3000 with different active phase ratios. The support, the metal oxide, and the composite are characterised by performing Brunauer, Emmett, and Teller analysis, transmission electron microscopy, X-ray diffraction analysis, X-ray fluorescence analysis, UV–Vis spectroscopy by diffuse reflectance, and Fourier transform infrared spectroscopy in order to evaluate the influence of the metal oxide on the activated carbon. A composite of MnO2/GAC (3.78% in phase α-MnO2) is obtained, with a 9.4% increase in the specific surface of the initial GAC and a 12.79 nm crystal size. The effect of pH and catalyst load is studied. At a pH of 9.0 and a dose of 0.9 g L−1, a high degradation of aniline and benzothiazole is obtained, with an 81.63% TOC mineralisation in 64.8 min.</description><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Aniline</subject><subject>Catalysts</subject><subject>Efficiency</subject><subject>Effluents</subject><subject>Energy</subject><subject>Environmental impact</subject><subject>Fluidized beds</subject><subject>Fourier transforms</subject><subject>Hydrothermal crystal growth</subject><subject>Industrial wastes</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Light</subject><subject>Manganese dioxide</subject><subject>Manufacturing</subject><subject>Mass transfer</subject><subject>Membrane separation</subject><subject>Metal oxides</subject><subject>Oxidation</subject><subject>Phenols</subject><subject>Photocatalysis</subject><subject>Pollutants</subject><subject>Reactors</subject><subject>Reproducibility</subject><subject>Sodium</subject><subject>Sulfur</subject><subject>Wastewater treatment</subject><subject>X ray fluorescence analysis</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1LHEEQhhtJUNl4yS9oyCUENvb3dF8Cm0VNwGCQSI5D2VPttsx0m-keRS_565mNYj7qUkXVw1tvUYS85uy9lI4dDsAVt1qwZofsc-fMkjulXvxV75GDUq7ZHFJyK9wu2ZNKN0ZJt09-nuOQb6GnOdBVin1MSCF19COmh1w3ER5yj_Q7lIp3UHEs9KLEdDUz9CiE6COmSr-kM3F4slrTNVTo70ulMVGgXze5Zv-7VaOnx_0Uu1hwK97RcwRf8_iKvAzQFzx4ygtycXz0bf1peXp28nm9Ol16aWVdmk6D5mBC0Npq1tjQCc0Ecw1zVnDZBd6Bsc4H7oTQyiqPhnEFHtEaDHJBPjzq3kyXA3Z-tj1C396McYDxvs0Q238nKW7aq3zbWmXmHW4WePskMOYfE5baDrF47HtImKfSCt00SjXaihl98x96nacxzedtKceFMbPlBXn3SPkxlzJieDbDWbt9bfvntfIXqsCU3A</recordid><startdate>20210910</startdate><enddate>20210910</enddate><creator>Ferreiro, Cristian</creator><creator>Villota, Natalia</creator><creator>Lombraña, José Ignacio</creator><creator>Rivero, María J.</creator><creator>Zúñiga, Verónica</creator><creator>Rituerto, José Miguel</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6931-4169</orcidid><orcidid>https://orcid.org/0000-0002-0291-9200</orcidid><orcidid>https://orcid.org/0000-0001-5861-2390</orcidid></search><sort><creationdate>20210910</creationdate><title>Removal of Aniline and Benzothiazole Wastewaters Using an Efficient MnO2/GAC Catalyst in a Photocatalytic Fluidised Bed Reactor</title><author>Ferreiro, Cristian ; Villota, Natalia ; Lombraña, José Ignacio ; Rivero, María J. ; Zúñiga, Verónica ; Rituerto, José Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6d5a51a6ff5585078fd2502097098213df1da689cf19225484ce6014acee86ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Aniline</topic><topic>Catalysts</topic><topic>Efficiency</topic><topic>Effluents</topic><topic>Energy</topic><topic>Environmental impact</topic><topic>Fluidized beds</topic><topic>Fourier transforms</topic><topic>Hydrothermal crystal growth</topic><topic>Industrial wastes</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Light</topic><topic>Manganese dioxide</topic><topic>Manufacturing</topic><topic>Mass transfer</topic><topic>Membrane separation</topic><topic>Metal oxides</topic><topic>Oxidation</topic><topic>Phenols</topic><topic>Photocatalysis</topic><topic>Pollutants</topic><topic>Reactors</topic><topic>Reproducibility</topic><topic>Sodium</topic><topic>Sulfur</topic><topic>Wastewater treatment</topic><topic>X ray fluorescence analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreiro, Cristian</creatorcontrib><creatorcontrib>Villota, Natalia</creatorcontrib><creatorcontrib>Lombraña, José Ignacio</creatorcontrib><creatorcontrib>Rivero, María J.</creatorcontrib><creatorcontrib>Zúñiga, Verónica</creatorcontrib><creatorcontrib>Rituerto, José Miguel</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreiro, Cristian</au><au>Villota, Natalia</au><au>Lombraña, José Ignacio</au><au>Rivero, María J.</au><au>Zúñiga, Verónica</au><au>Rituerto, José Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal of Aniline and Benzothiazole Wastewaters Using an Efficient MnO2/GAC Catalyst in a Photocatalytic Fluidised Bed Reactor</atitle><jtitle>Materials</jtitle><date>2021-09-10</date><risdate>2021</risdate><volume>14</volume><issue>18</issue><spage>5207</spage><pages>5207-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This work presents an efficient method for treating industrial wastewater containing aniline and benzothiazole, which are refractory to conventional treatments. A combination of heterogeneous photocatalysis operating in a fluidised bed reactor is studied in order to increase mass transfer and reduce reaction times. This process uses a manganese dioxide catalyst supported on granular activated carbon with environmentally friendly characteristics. The manganese dioxide composite is prepared by hydrothermal synthesis on carbon Hydrodarco® 3000 with different active phase ratios. The support, the metal oxide, and the composite are characterised by performing Brunauer, Emmett, and Teller analysis, transmission electron microscopy, X-ray diffraction analysis, X-ray fluorescence analysis, UV–Vis spectroscopy by diffuse reflectance, and Fourier transform infrared spectroscopy in order to evaluate the influence of the metal oxide on the activated carbon. A composite of MnO2/GAC (3.78% in phase α-MnO2) is obtained, with a 9.4% increase in the specific surface of the initial GAC and a 12.79 nm crystal size. The effect of pH and catalyst load is studied. At a pH of 9.0 and a dose of 0.9 g L−1, a high degradation of aniline and benzothiazole is obtained, with an 81.63% TOC mineralisation in 64.8 min.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34576439</pmid><doi>10.3390/ma14185207</doi><orcidid>https://orcid.org/0000-0002-6931-4169</orcidid><orcidid>https://orcid.org/0000-0002-0291-9200</orcidid><orcidid>https://orcid.org/0000-0001-5861-2390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-09, Vol.14 (18), p.5207
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8467099
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Activated carbon
Adsorption
Aniline
Catalysts
Efficiency
Effluents
Energy
Environmental impact
Fluidized beds
Fourier transforms
Hydrothermal crystal growth
Industrial wastes
Infrared analysis
Infrared spectroscopy
Light
Manganese dioxide
Manufacturing
Mass transfer
Membrane separation
Metal oxides
Oxidation
Phenols
Photocatalysis
Pollutants
Reactors
Reproducibility
Sodium
Sulfur
Wastewater treatment
X ray fluorescence analysis
title Removal of Aniline and Benzothiazole Wastewaters Using an Efficient MnO2/GAC Catalyst in a Photocatalytic Fluidised Bed Reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20of%20Aniline%20and%20Benzothiazole%20Wastewaters%20Using%20an%20Efficient%20MnO2/GAC%20Catalyst%20in%20a%20Photocatalytic%20Fluidised%20Bed%20Reactor&rft.jtitle=Materials&rft.au=Ferreiro,%20Cristian&rft.date=2021-09-10&rft.volume=14&rft.issue=18&rft.spage=5207&rft.pages=5207-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14185207&rft_dat=%3Cproquest_pubme%3E2579126621%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579126621&rft_id=info:pmid/34576439&rfr_iscdi=true