Mobilization upon Cooling

Phase transitions between different aggregate states are omnipresent in nature and technology. Conventionally, a crystalline phase melts upon heating as we use ice to cool a drink. Already in 1903, Gustav Tammann speculated about the opposite process, namely melting upon cooling. So far, evidence fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-08, Vol.60 (35), p.19117-19122
Hauptverfasser: Aeschlimann, Simon, Lyu, Lu, Becker, Sebastian, Mousavion, Sina, Speck, Thomas, Elmers, Hans‐Joachim, Stadtmüller, Benjamin, Aeschlimann, Martin, Bechstein, Ralf, Kühnle, Angelika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19122
container_issue 35
container_start_page 19117
container_title Angewandte Chemie International Edition
container_volume 60
creator Aeschlimann, Simon
Lyu, Lu
Becker, Sebastian
Mousavion, Sina
Speck, Thomas
Elmers, Hans‐Joachim
Stadtmüller, Benjamin
Aeschlimann, Martin
Bechstein, Ralf
Kühnle, Angelika
description Phase transitions between different aggregate states are omnipresent in nature and technology. Conventionally, a crystalline phase melts upon heating as we use ice to cool a drink. Already in 1903, Gustav Tammann speculated about the opposite process, namely melting upon cooling. So far, evidence for such “inverse” transitions in real materials is rare and limited to few systems or extreme conditions. Here, we demonstrate an inverse phase transition for molecules adsorbed on a surface. Molybdenum tetraacetate on copper(111) forms an ordered structure at room temperature, which dissolves upon cooling. This transition is mediated by molecules becoming mobile, i.e., by mobilization upon cooling. This unexpected phenomenon is ascribed to the larger number of internal degrees of freedom in the ordered phase compared to the mobile phase at low temperatures. We all know that ice becomes liquid upon heating. In contrast, melting upon cooling is an unusual behavior. A system of molecules adsorbed to a surface, which become mobile upon cooling, was developed. The key for understanding these counterintuitive phase transitions lies in the fact that the high temperature ordered phase possesses more degrees of freedom leading to a larger entropy than the low‐temperature unordered phase.
doi_str_mv 10.1002/anie.202105100
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8457188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561851024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4450-8f99230f2438421ea99b4da3746ea7c93fb129fd98327ed4400a1726b7899ccd3</originalsourceid><addsrcrecordid>eNqFkM9LwzAcxYMobk6vgjfBi5fOb341yUUYZepg6kXPIW3TmdE1s1mV-debsTHRi5ckX_J5j-97CJ1jGGIAcmMaZ4cECAYe5wPUx5zghApBD-ObUZoIyXEPnYQwj7yUkB6jHmURAw59dPHoc1e7L7NyvrnslvHIvK9dMztFR5Wpgz3b3QP0ejd-yR6S6fP9JBtNk4IxDomslCIUKsKoZARbo1TOSkMFS60RhaJVjomqSiUpEbZkDMBgQdJcSKWKoqQDdLv1XXb5wpaFbVatqfWydQvTrrU3Tv_-adybnvkPLRkXWMpocL0zaP17Z8NKL1wobF2bxvouaMIZFZDKdINe_UHnvmubGC9SKY5NQcwxQMMtVbQ-hNZW-2Uw6E3retO63rceBWor-HS1Xf9D69HTZPyj_QbzW4Jn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561851024</pqid></control><display><type>article</type><title>Mobilization upon Cooling</title><source>Access via Wiley Online Library</source><creator>Aeschlimann, Simon ; Lyu, Lu ; Becker, Sebastian ; Mousavion, Sina ; Speck, Thomas ; Elmers, Hans‐Joachim ; Stadtmüller, Benjamin ; Aeschlimann, Martin ; Bechstein, Ralf ; Kühnle, Angelika</creator><creatorcontrib>Aeschlimann, Simon ; Lyu, Lu ; Becker, Sebastian ; Mousavion, Sina ; Speck, Thomas ; Elmers, Hans‐Joachim ; Stadtmüller, Benjamin ; Aeschlimann, Martin ; Bechstein, Ralf ; Kühnle, Angelika</creatorcontrib><description>Phase transitions between different aggregate states are omnipresent in nature and technology. Conventionally, a crystalline phase melts upon heating as we use ice to cool a drink. Already in 1903, Gustav Tammann speculated about the opposite process, namely melting upon cooling. So far, evidence for such “inverse” transitions in real materials is rare and limited to few systems or extreme conditions. Here, we demonstrate an inverse phase transition for molecules adsorbed on a surface. Molybdenum tetraacetate on copper(111) forms an ordered structure at room temperature, which dissolves upon cooling. This transition is mediated by molecules becoming mobile, i.e., by mobilization upon cooling. This unexpected phenomenon is ascribed to the larger number of internal degrees of freedom in the ordered phase compared to the mobile phase at low temperatures. We all know that ice becomes liquid upon heating. In contrast, melting upon cooling is an unusual behavior. A system of molecules adsorbed to a surface, which become mobile upon cooling, was developed. The key for understanding these counterintuitive phase transitions lies in the fact that the high temperature ordered phase possesses more degrees of freedom leading to a larger entropy than the low‐temperature unordered phase.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202105100</identifier><identifier>PMID: 34152050</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Communication ; Communications ; Cooling ; inverse melting ; Low temperature ; Melts (crystal growth) ; molecular self-assembly ; Molybdenum ; Monte Carlo simulation ; phase transition ; Phase transitions ; Room temperature ; STM</subject><ispartof>Angewandte Chemie International Edition, 2021-08, Vol.60 (35), p.19117-19122</ispartof><rights>2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4450-8f99230f2438421ea99b4da3746ea7c93fb129fd98327ed4400a1726b7899ccd3</citedby><cites>FETCH-LOGICAL-c4450-8f99230f2438421ea99b4da3746ea7c93fb129fd98327ed4400a1726b7899ccd3</cites><orcidid>0000-0002-6357-1180 ; 0000-0003-1214-1006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202105100$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202105100$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Aeschlimann, Simon</creatorcontrib><creatorcontrib>Lyu, Lu</creatorcontrib><creatorcontrib>Becker, Sebastian</creatorcontrib><creatorcontrib>Mousavion, Sina</creatorcontrib><creatorcontrib>Speck, Thomas</creatorcontrib><creatorcontrib>Elmers, Hans‐Joachim</creatorcontrib><creatorcontrib>Stadtmüller, Benjamin</creatorcontrib><creatorcontrib>Aeschlimann, Martin</creatorcontrib><creatorcontrib>Bechstein, Ralf</creatorcontrib><creatorcontrib>Kühnle, Angelika</creatorcontrib><title>Mobilization upon Cooling</title><title>Angewandte Chemie International Edition</title><description>Phase transitions between different aggregate states are omnipresent in nature and technology. Conventionally, a crystalline phase melts upon heating as we use ice to cool a drink. Already in 1903, Gustav Tammann speculated about the opposite process, namely melting upon cooling. So far, evidence for such “inverse” transitions in real materials is rare and limited to few systems or extreme conditions. Here, we demonstrate an inverse phase transition for molecules adsorbed on a surface. Molybdenum tetraacetate on copper(111) forms an ordered structure at room temperature, which dissolves upon cooling. This transition is mediated by molecules becoming mobile, i.e., by mobilization upon cooling. This unexpected phenomenon is ascribed to the larger number of internal degrees of freedom in the ordered phase compared to the mobile phase at low temperatures. We all know that ice becomes liquid upon heating. In contrast, melting upon cooling is an unusual behavior. A system of molecules adsorbed to a surface, which become mobile upon cooling, was developed. The key for understanding these counterintuitive phase transitions lies in the fact that the high temperature ordered phase possesses more degrees of freedom leading to a larger entropy than the low‐temperature unordered phase.</description><subject>Communication</subject><subject>Communications</subject><subject>Cooling</subject><subject>inverse melting</subject><subject>Low temperature</subject><subject>Melts (crystal growth)</subject><subject>molecular self-assembly</subject><subject>Molybdenum</subject><subject>Monte Carlo simulation</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Room temperature</subject><subject>STM</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM9LwzAcxYMobk6vgjfBi5fOb341yUUYZepg6kXPIW3TmdE1s1mV-debsTHRi5ckX_J5j-97CJ1jGGIAcmMaZ4cECAYe5wPUx5zghApBD-ObUZoIyXEPnYQwj7yUkB6jHmURAw59dPHoc1e7L7NyvrnslvHIvK9dMztFR5Wpgz3b3QP0ejd-yR6S6fP9JBtNk4IxDomslCIUKsKoZARbo1TOSkMFS60RhaJVjomqSiUpEbZkDMBgQdJcSKWKoqQDdLv1XXb5wpaFbVatqfWydQvTrrU3Tv_-adybnvkPLRkXWMpocL0zaP17Z8NKL1wobF2bxvouaMIZFZDKdINe_UHnvmubGC9SKY5NQcwxQMMtVbQ-hNZW-2Uw6E3retO63rceBWor-HS1Xf9D69HTZPyj_QbzW4Jn</recordid><startdate>20210823</startdate><enddate>20210823</enddate><creator>Aeschlimann, Simon</creator><creator>Lyu, Lu</creator><creator>Becker, Sebastian</creator><creator>Mousavion, Sina</creator><creator>Speck, Thomas</creator><creator>Elmers, Hans‐Joachim</creator><creator>Stadtmüller, Benjamin</creator><creator>Aeschlimann, Martin</creator><creator>Bechstein, Ralf</creator><creator>Kühnle, Angelika</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6357-1180</orcidid><orcidid>https://orcid.org/0000-0003-1214-1006</orcidid></search><sort><creationdate>20210823</creationdate><title>Mobilization upon Cooling</title><author>Aeschlimann, Simon ; Lyu, Lu ; Becker, Sebastian ; Mousavion, Sina ; Speck, Thomas ; Elmers, Hans‐Joachim ; Stadtmüller, Benjamin ; Aeschlimann, Martin ; Bechstein, Ralf ; Kühnle, Angelika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4450-8f99230f2438421ea99b4da3746ea7c93fb129fd98327ed4400a1726b7899ccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Communication</topic><topic>Communications</topic><topic>Cooling</topic><topic>inverse melting</topic><topic>Low temperature</topic><topic>Melts (crystal growth)</topic><topic>molecular self-assembly</topic><topic>Molybdenum</topic><topic>Monte Carlo simulation</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Room temperature</topic><topic>STM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aeschlimann, Simon</creatorcontrib><creatorcontrib>Lyu, Lu</creatorcontrib><creatorcontrib>Becker, Sebastian</creatorcontrib><creatorcontrib>Mousavion, Sina</creatorcontrib><creatorcontrib>Speck, Thomas</creatorcontrib><creatorcontrib>Elmers, Hans‐Joachim</creatorcontrib><creatorcontrib>Stadtmüller, Benjamin</creatorcontrib><creatorcontrib>Aeschlimann, Martin</creatorcontrib><creatorcontrib>Bechstein, Ralf</creatorcontrib><creatorcontrib>Kühnle, Angelika</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aeschlimann, Simon</au><au>Lyu, Lu</au><au>Becker, Sebastian</au><au>Mousavion, Sina</au><au>Speck, Thomas</au><au>Elmers, Hans‐Joachim</au><au>Stadtmüller, Benjamin</au><au>Aeschlimann, Martin</au><au>Bechstein, Ralf</au><au>Kühnle, Angelika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobilization upon Cooling</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2021-08-23</date><risdate>2021</risdate><volume>60</volume><issue>35</issue><spage>19117</spage><epage>19122</epage><pages>19117-19122</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Phase transitions between different aggregate states are omnipresent in nature and technology. Conventionally, a crystalline phase melts upon heating as we use ice to cool a drink. Already in 1903, Gustav Tammann speculated about the opposite process, namely melting upon cooling. So far, evidence for such “inverse” transitions in real materials is rare and limited to few systems or extreme conditions. Here, we demonstrate an inverse phase transition for molecules adsorbed on a surface. Molybdenum tetraacetate on copper(111) forms an ordered structure at room temperature, which dissolves upon cooling. This transition is mediated by molecules becoming mobile, i.e., by mobilization upon cooling. This unexpected phenomenon is ascribed to the larger number of internal degrees of freedom in the ordered phase compared to the mobile phase at low temperatures. We all know that ice becomes liquid upon heating. In contrast, melting upon cooling is an unusual behavior. A system of molecules adsorbed to a surface, which become mobile upon cooling, was developed. The key for understanding these counterintuitive phase transitions lies in the fact that the high temperature ordered phase possesses more degrees of freedom leading to a larger entropy than the low‐temperature unordered phase.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34152050</pmid><doi>10.1002/anie.202105100</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-6357-1180</orcidid><orcidid>https://orcid.org/0000-0003-1214-1006</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2021-08, Vol.60 (35), p.19117-19122
issn 1433-7851
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8457188
source Access via Wiley Online Library
subjects Communication
Communications
Cooling
inverse melting
Low temperature
Melts (crystal growth)
molecular self-assembly
Molybdenum
Monte Carlo simulation
phase transition
Phase transitions
Room temperature
STM
title Mobilization upon Cooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobilization%20upon%20Cooling&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Aeschlimann,%20Simon&rft.date=2021-08-23&rft.volume=60&rft.issue=35&rft.spage=19117&rft.epage=19122&rft.pages=19117-19122&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202105100&rft_dat=%3Cproquest_pubme%3E2561851024%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561851024&rft_id=info:pmid/34152050&rfr_iscdi=true