Mobilization upon Cooling
Phase transitions between different aggregate states are omnipresent in nature and technology. Conventionally, a crystalline phase melts upon heating as we use ice to cool a drink. Already in 1903, Gustav Tammann speculated about the opposite process, namely melting upon cooling. So far, evidence fo...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2021-08, Vol.60 (35), p.19117-19122 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19122 |
---|---|
container_issue | 35 |
container_start_page | 19117 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | Aeschlimann, Simon Lyu, Lu Becker, Sebastian Mousavion, Sina Speck, Thomas Elmers, Hans‐Joachim Stadtmüller, Benjamin Aeschlimann, Martin Bechstein, Ralf Kühnle, Angelika |
description | Phase transitions between different aggregate states are omnipresent in nature and technology. Conventionally, a crystalline phase melts upon heating as we use ice to cool a drink. Already in 1903, Gustav Tammann speculated about the opposite process, namely melting upon cooling. So far, evidence for such “inverse” transitions in real materials is rare and limited to few systems or extreme conditions. Here, we demonstrate an inverse phase transition for molecules adsorbed on a surface. Molybdenum tetraacetate on copper(111) forms an ordered structure at room temperature, which dissolves upon cooling. This transition is mediated by molecules becoming mobile, i.e., by mobilization upon cooling. This unexpected phenomenon is ascribed to the larger number of internal degrees of freedom in the ordered phase compared to the mobile phase at low temperatures.
We all know that ice becomes liquid upon heating. In contrast, melting upon cooling is an unusual behavior. A system of molecules adsorbed to a surface, which become mobile upon cooling, was developed. The key for understanding these counterintuitive phase transitions lies in the fact that the high temperature ordered phase possesses more degrees of freedom leading to a larger entropy than the low‐temperature unordered phase. |
doi_str_mv | 10.1002/anie.202105100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8457188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561851024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4450-8f99230f2438421ea99b4da3746ea7c93fb129fd98327ed4400a1726b7899ccd3</originalsourceid><addsrcrecordid>eNqFkM9LwzAcxYMobk6vgjfBi5fOb341yUUYZepg6kXPIW3TmdE1s1mV-debsTHRi5ckX_J5j-97CJ1jGGIAcmMaZ4cECAYe5wPUx5zghApBD-ObUZoIyXEPnYQwj7yUkB6jHmURAw59dPHoc1e7L7NyvrnslvHIvK9dMztFR5Wpgz3b3QP0ejd-yR6S6fP9JBtNk4IxDomslCIUKsKoZARbo1TOSkMFS60RhaJVjomqSiUpEbZkDMBgQdJcSKWKoqQDdLv1XXb5wpaFbVatqfWydQvTrrU3Tv_-adybnvkPLRkXWMpocL0zaP17Z8NKL1wobF2bxvouaMIZFZDKdINe_UHnvmubGC9SKY5NQcwxQMMtVbQ-hNZW-2Uw6E3retO63rceBWor-HS1Xf9D69HTZPyj_QbzW4Jn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561851024</pqid></control><display><type>article</type><title>Mobilization upon Cooling</title><source>Access via Wiley Online Library</source><creator>Aeschlimann, Simon ; Lyu, Lu ; Becker, Sebastian ; Mousavion, Sina ; Speck, Thomas ; Elmers, Hans‐Joachim ; Stadtmüller, Benjamin ; Aeschlimann, Martin ; Bechstein, Ralf ; Kühnle, Angelika</creator><creatorcontrib>Aeschlimann, Simon ; Lyu, Lu ; Becker, Sebastian ; Mousavion, Sina ; Speck, Thomas ; Elmers, Hans‐Joachim ; Stadtmüller, Benjamin ; Aeschlimann, Martin ; Bechstein, Ralf ; Kühnle, Angelika</creatorcontrib><description>Phase transitions between different aggregate states are omnipresent in nature and technology. Conventionally, a crystalline phase melts upon heating as we use ice to cool a drink. Already in 1903, Gustav Tammann speculated about the opposite process, namely melting upon cooling. So far, evidence for such “inverse” transitions in real materials is rare and limited to few systems or extreme conditions. Here, we demonstrate an inverse phase transition for molecules adsorbed on a surface. Molybdenum tetraacetate on copper(111) forms an ordered structure at room temperature, which dissolves upon cooling. This transition is mediated by molecules becoming mobile, i.e., by mobilization upon cooling. This unexpected phenomenon is ascribed to the larger number of internal degrees of freedom in the ordered phase compared to the mobile phase at low temperatures.
We all know that ice becomes liquid upon heating. In contrast, melting upon cooling is an unusual behavior. A system of molecules adsorbed to a surface, which become mobile upon cooling, was developed. The key for understanding these counterintuitive phase transitions lies in the fact that the high temperature ordered phase possesses more degrees of freedom leading to a larger entropy than the low‐temperature unordered phase.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202105100</identifier><identifier>PMID: 34152050</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Communication ; Communications ; Cooling ; inverse melting ; Low temperature ; Melts (crystal growth) ; molecular self-assembly ; Molybdenum ; Monte Carlo simulation ; phase transition ; Phase transitions ; Room temperature ; STM</subject><ispartof>Angewandte Chemie International Edition, 2021-08, Vol.60 (35), p.19117-19122</ispartof><rights>2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4450-8f99230f2438421ea99b4da3746ea7c93fb129fd98327ed4400a1726b7899ccd3</citedby><cites>FETCH-LOGICAL-c4450-8f99230f2438421ea99b4da3746ea7c93fb129fd98327ed4400a1726b7899ccd3</cites><orcidid>0000-0002-6357-1180 ; 0000-0003-1214-1006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202105100$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202105100$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Aeschlimann, Simon</creatorcontrib><creatorcontrib>Lyu, Lu</creatorcontrib><creatorcontrib>Becker, Sebastian</creatorcontrib><creatorcontrib>Mousavion, Sina</creatorcontrib><creatorcontrib>Speck, Thomas</creatorcontrib><creatorcontrib>Elmers, Hans‐Joachim</creatorcontrib><creatorcontrib>Stadtmüller, Benjamin</creatorcontrib><creatorcontrib>Aeschlimann, Martin</creatorcontrib><creatorcontrib>Bechstein, Ralf</creatorcontrib><creatorcontrib>Kühnle, Angelika</creatorcontrib><title>Mobilization upon Cooling</title><title>Angewandte Chemie International Edition</title><description>Phase transitions between different aggregate states are omnipresent in nature and technology. Conventionally, a crystalline phase melts upon heating as we use ice to cool a drink. Already in 1903, Gustav Tammann speculated about the opposite process, namely melting upon cooling. So far, evidence for such “inverse” transitions in real materials is rare and limited to few systems or extreme conditions. Here, we demonstrate an inverse phase transition for molecules adsorbed on a surface. Molybdenum tetraacetate on copper(111) forms an ordered structure at room temperature, which dissolves upon cooling. This transition is mediated by molecules becoming mobile, i.e., by mobilization upon cooling. This unexpected phenomenon is ascribed to the larger number of internal degrees of freedom in the ordered phase compared to the mobile phase at low temperatures.
We all know that ice becomes liquid upon heating. In contrast, melting upon cooling is an unusual behavior. A system of molecules adsorbed to a surface, which become mobile upon cooling, was developed. The key for understanding these counterintuitive phase transitions lies in the fact that the high temperature ordered phase possesses more degrees of freedom leading to a larger entropy than the low‐temperature unordered phase.</description><subject>Communication</subject><subject>Communications</subject><subject>Cooling</subject><subject>inverse melting</subject><subject>Low temperature</subject><subject>Melts (crystal growth)</subject><subject>molecular self-assembly</subject><subject>Molybdenum</subject><subject>Monte Carlo simulation</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Room temperature</subject><subject>STM</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM9LwzAcxYMobk6vgjfBi5fOb341yUUYZepg6kXPIW3TmdE1s1mV-debsTHRi5ckX_J5j-97CJ1jGGIAcmMaZ4cECAYe5wPUx5zghApBD-ObUZoIyXEPnYQwj7yUkB6jHmURAw59dPHoc1e7L7NyvrnslvHIvK9dMztFR5Wpgz3b3QP0ejd-yR6S6fP9JBtNk4IxDomslCIUKsKoZARbo1TOSkMFS60RhaJVjomqSiUpEbZkDMBgQdJcSKWKoqQDdLv1XXb5wpaFbVatqfWydQvTrrU3Tv_-adybnvkPLRkXWMpocL0zaP17Z8NKL1wobF2bxvouaMIZFZDKdINe_UHnvmubGC9SKY5NQcwxQMMtVbQ-hNZW-2Uw6E3retO63rceBWor-HS1Xf9D69HTZPyj_QbzW4Jn</recordid><startdate>20210823</startdate><enddate>20210823</enddate><creator>Aeschlimann, Simon</creator><creator>Lyu, Lu</creator><creator>Becker, Sebastian</creator><creator>Mousavion, Sina</creator><creator>Speck, Thomas</creator><creator>Elmers, Hans‐Joachim</creator><creator>Stadtmüller, Benjamin</creator><creator>Aeschlimann, Martin</creator><creator>Bechstein, Ralf</creator><creator>Kühnle, Angelika</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6357-1180</orcidid><orcidid>https://orcid.org/0000-0003-1214-1006</orcidid></search><sort><creationdate>20210823</creationdate><title>Mobilization upon Cooling</title><author>Aeschlimann, Simon ; Lyu, Lu ; Becker, Sebastian ; Mousavion, Sina ; Speck, Thomas ; Elmers, Hans‐Joachim ; Stadtmüller, Benjamin ; Aeschlimann, Martin ; Bechstein, Ralf ; Kühnle, Angelika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4450-8f99230f2438421ea99b4da3746ea7c93fb129fd98327ed4400a1726b7899ccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Communication</topic><topic>Communications</topic><topic>Cooling</topic><topic>inverse melting</topic><topic>Low temperature</topic><topic>Melts (crystal growth)</topic><topic>molecular self-assembly</topic><topic>Molybdenum</topic><topic>Monte Carlo simulation</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Room temperature</topic><topic>STM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aeschlimann, Simon</creatorcontrib><creatorcontrib>Lyu, Lu</creatorcontrib><creatorcontrib>Becker, Sebastian</creatorcontrib><creatorcontrib>Mousavion, Sina</creatorcontrib><creatorcontrib>Speck, Thomas</creatorcontrib><creatorcontrib>Elmers, Hans‐Joachim</creatorcontrib><creatorcontrib>Stadtmüller, Benjamin</creatorcontrib><creatorcontrib>Aeschlimann, Martin</creatorcontrib><creatorcontrib>Bechstein, Ralf</creatorcontrib><creatorcontrib>Kühnle, Angelika</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aeschlimann, Simon</au><au>Lyu, Lu</au><au>Becker, Sebastian</au><au>Mousavion, Sina</au><au>Speck, Thomas</au><au>Elmers, Hans‐Joachim</au><au>Stadtmüller, Benjamin</au><au>Aeschlimann, Martin</au><au>Bechstein, Ralf</au><au>Kühnle, Angelika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobilization upon Cooling</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2021-08-23</date><risdate>2021</risdate><volume>60</volume><issue>35</issue><spage>19117</spage><epage>19122</epage><pages>19117-19122</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Phase transitions between different aggregate states are omnipresent in nature and technology. Conventionally, a crystalline phase melts upon heating as we use ice to cool a drink. Already in 1903, Gustav Tammann speculated about the opposite process, namely melting upon cooling. So far, evidence for such “inverse” transitions in real materials is rare and limited to few systems or extreme conditions. Here, we demonstrate an inverse phase transition for molecules adsorbed on a surface. Molybdenum tetraacetate on copper(111) forms an ordered structure at room temperature, which dissolves upon cooling. This transition is mediated by molecules becoming mobile, i.e., by mobilization upon cooling. This unexpected phenomenon is ascribed to the larger number of internal degrees of freedom in the ordered phase compared to the mobile phase at low temperatures.
We all know that ice becomes liquid upon heating. In contrast, melting upon cooling is an unusual behavior. A system of molecules adsorbed to a surface, which become mobile upon cooling, was developed. The key for understanding these counterintuitive phase transitions lies in the fact that the high temperature ordered phase possesses more degrees of freedom leading to a larger entropy than the low‐temperature unordered phase.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34152050</pmid><doi>10.1002/anie.202105100</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-6357-1180</orcidid><orcidid>https://orcid.org/0000-0003-1214-1006</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-08, Vol.60 (35), p.19117-19122 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8457188 |
source | Access via Wiley Online Library |
subjects | Communication Communications Cooling inverse melting Low temperature Melts (crystal growth) molecular self-assembly Molybdenum Monte Carlo simulation phase transition Phase transitions Room temperature STM |
title | Mobilization upon Cooling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobilization%20upon%20Cooling&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Aeschlimann,%20Simon&rft.date=2021-08-23&rft.volume=60&rft.issue=35&rft.spage=19117&rft.epage=19122&rft.pages=19117-19122&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202105100&rft_dat=%3Cproquest_pubme%3E2561851024%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561851024&rft_id=info:pmid/34152050&rfr_iscdi=true |