Oxygen Absorption in Electrocatalyst Layers Detected by Scanning Electrochemical Microscopy

Scanning electrochemical microscopy (SECM) is able to track the local electrochemical activity of an electrolyte‐immersed substrate employing an ultra‐micro‐electrode (UME) in micrometer‐scale spatial resolution. In this study, SECM is employed to investigate the presence of oxygen in the electrocat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2021-08, Vol.8 (15), p.2950-2955
Hauptverfasser: Moghaddam, Mahdi, Peljo, Pekka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2955
container_issue 15
container_start_page 2950
container_title ChemElectroChem
container_volume 8
creator Moghaddam, Mahdi
Peljo, Pekka
description Scanning electrochemical microscopy (SECM) is able to track the local electrochemical activity of an electrolyte‐immersed substrate employing an ultra‐micro‐electrode (UME) in micrometer‐scale spatial resolution. In this study, SECM is employed to investigate the presence of oxygen in the electrocatalyst layers of polymer electrolyte membrane fuel cells and electrolyzers. Approach curves on electrocatalyst layers with the tip potential set for oxygen reduction reveal that a significant amount of oxygen is absorbed in the catalyst layer. We confirm that the coexistence of Nafion ionomer and carbon black leads to oxygen confinement. It is suggested that this oxygen is confined within the hydrophobic parts of the self‐assembled Nafion on the graphitic surfaces of the carbon black. Absorption of oxygen into the electrocatalyst layer only in the presence of Nafion (Nafion+Catalyst) is confirmed using scanning electrochemical microscopy. This is justified from a positive feedback when the tip approaches the layer containing both catalyst and Nafion. In contrast, a negative feedback is observed for both the catalyst and Nafion, when tested separately, indicating no significant amount of oxygen is absorbed into either of them.
doi_str_mv 10.1002/celc.202100702
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8457140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578147647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4682-dfab8538145149ec1479fd64be97802fb34153d24ab14cfe9fdfa144e40d22b63</originalsourceid><addsrcrecordid>eNqFkb1PwzAQxS0Eoqh0ZUSRWFhabMdxkgWpKuVDKuoATAyW41yKUWoXOwXy3-OqpRQWJvt8Pz-9u4fQCcEDgjG9UFCrAcU0FCmme-iIkpz3Q833d-4d1PP-FWNMCE7ijB-iTsySLI8zfISep5_tDEw0LLx1i0ZbE2kTjWtQjbNKNrJufRNNZAvOR1fQhHcoo6KNHpQ0RpvZln2BuVayju61ctYru2iP0UElaw-9zdlFT9fjx9FtfzK9uRsNJ33FeEb7ZSWLLBgjLCEsB0VYmlclZwXkaYZpVcSMJHFJmSwIUxWEZiUJY8BwSWnB4y66XOsulsUcSgWmcbIWC6fn0rXCSi1-d4x-ETP7LjKWpIThIHC-EXD2bQm-EXPtw3JracAuvaBJGtylnKUBPfuDvtqlM2G8QPEk5znnWaAGa2q1Cu-g2pohWKyiE6voxDa68OF0d4Qt_h1UAPI18KFraP-RE6PxZPQj_gVeOKak</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565969668</pqid></control><display><type>article</type><title>Oxygen Absorption in Electrocatalyst Layers Detected by Scanning Electrochemical Microscopy</title><source>Wiley Journals</source><creator>Moghaddam, Mahdi ; Peljo, Pekka</creator><creatorcontrib>Moghaddam, Mahdi ; Peljo, Pekka</creatorcontrib><description>Scanning electrochemical microscopy (SECM) is able to track the local electrochemical activity of an electrolyte‐immersed substrate employing an ultra‐micro‐electrode (UME) in micrometer‐scale spatial resolution. In this study, SECM is employed to investigate the presence of oxygen in the electrocatalyst layers of polymer electrolyte membrane fuel cells and electrolyzers. Approach curves on electrocatalyst layers with the tip potential set for oxygen reduction reveal that a significant amount of oxygen is absorbed in the catalyst layer. We confirm that the coexistence of Nafion ionomer and carbon black leads to oxygen confinement. It is suggested that this oxygen is confined within the hydrophobic parts of the self‐assembled Nafion on the graphitic surfaces of the carbon black. Absorption of oxygen into the electrocatalyst layer only in the presence of Nafion (Nafion+Catalyst) is confirmed using scanning electrochemical microscopy. This is justified from a positive feedback when the tip approaches the layer containing both catalyst and Nafion. In contrast, a negative feedback is observed for both the catalyst and Nafion, when tested separately, indicating no significant amount of oxygen is absorbed into either of them.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.202100702</identifier><identifier>PMID: 34589380</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>Carbon ; Carbon black ; Electrocatalysts ; Electrolytes ; Electrolytic cells ; Ionomers ; Microscopes ; Microscopy ; Nafion ; Oxygen ; oxygen confinement ; Proton exchange membrane fuel cells ; redox chemistry ; scanning electrochemical microscopy ; Spatial resolution ; Substrates ; supported catalysts</subject><ispartof>ChemElectroChem, 2021-08, Vol.8 (15), p.2950-2955</ispartof><rights>2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH</rights><rights>2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4682-dfab8538145149ec1479fd64be97802fb34153d24ab14cfe9fdfa144e40d22b63</citedby><cites>FETCH-LOGICAL-c4682-dfab8538145149ec1479fd64be97802fb34153d24ab14cfe9fdfa144e40d22b63</cites><orcidid>0000-0003-2426-6789 ; 0000-0002-1229-2261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.202100702$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.202100702$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34589380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moghaddam, Mahdi</creatorcontrib><creatorcontrib>Peljo, Pekka</creatorcontrib><title>Oxygen Absorption in Electrocatalyst Layers Detected by Scanning Electrochemical Microscopy</title><title>ChemElectroChem</title><addtitle>ChemElectroChem</addtitle><description>Scanning electrochemical microscopy (SECM) is able to track the local electrochemical activity of an electrolyte‐immersed substrate employing an ultra‐micro‐electrode (UME) in micrometer‐scale spatial resolution. In this study, SECM is employed to investigate the presence of oxygen in the electrocatalyst layers of polymer electrolyte membrane fuel cells and electrolyzers. Approach curves on electrocatalyst layers with the tip potential set for oxygen reduction reveal that a significant amount of oxygen is absorbed in the catalyst layer. We confirm that the coexistence of Nafion ionomer and carbon black leads to oxygen confinement. It is suggested that this oxygen is confined within the hydrophobic parts of the self‐assembled Nafion on the graphitic surfaces of the carbon black. Absorption of oxygen into the electrocatalyst layer only in the presence of Nafion (Nafion+Catalyst) is confirmed using scanning electrochemical microscopy. This is justified from a positive feedback when the tip approaches the layer containing both catalyst and Nafion. In contrast, a negative feedback is observed for both the catalyst and Nafion, when tested separately, indicating no significant amount of oxygen is absorbed into either of them.</description><subject>Carbon</subject><subject>Carbon black</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Ionomers</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Nafion</subject><subject>Oxygen</subject><subject>oxygen confinement</subject><subject>Proton exchange membrane fuel cells</subject><subject>redox chemistry</subject><subject>scanning electrochemical microscopy</subject><subject>Spatial resolution</subject><subject>Substrates</subject><subject>supported catalysts</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkb1PwzAQxS0Eoqh0ZUSRWFhabMdxkgWpKuVDKuoATAyW41yKUWoXOwXy3-OqpRQWJvt8Pz-9u4fQCcEDgjG9UFCrAcU0FCmme-iIkpz3Q833d-4d1PP-FWNMCE7ijB-iTsySLI8zfISep5_tDEw0LLx1i0ZbE2kTjWtQjbNKNrJufRNNZAvOR1fQhHcoo6KNHpQ0RpvZln2BuVayju61ctYru2iP0UElaw-9zdlFT9fjx9FtfzK9uRsNJ33FeEb7ZSWLLBgjLCEsB0VYmlclZwXkaYZpVcSMJHFJmSwIUxWEZiUJY8BwSWnB4y66XOsulsUcSgWmcbIWC6fn0rXCSi1-d4x-ETP7LjKWpIThIHC-EXD2bQm-EXPtw3JracAuvaBJGtylnKUBPfuDvtqlM2G8QPEk5znnWaAGa2q1Cu-g2pohWKyiE6voxDa68OF0d4Qt_h1UAPI18KFraP-RE6PxZPQj_gVeOKak</recordid><startdate>20210802</startdate><enddate>20210802</enddate><creator>Moghaddam, Mahdi</creator><creator>Peljo, Pekka</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2426-6789</orcidid><orcidid>https://orcid.org/0000-0002-1229-2261</orcidid></search><sort><creationdate>20210802</creationdate><title>Oxygen Absorption in Electrocatalyst Layers Detected by Scanning Electrochemical Microscopy</title><author>Moghaddam, Mahdi ; Peljo, Pekka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4682-dfab8538145149ec1479fd64be97802fb34153d24ab14cfe9fdfa144e40d22b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Carbon black</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Ionomers</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Nafion</topic><topic>Oxygen</topic><topic>oxygen confinement</topic><topic>Proton exchange membrane fuel cells</topic><topic>redox chemistry</topic><topic>scanning electrochemical microscopy</topic><topic>Spatial resolution</topic><topic>Substrates</topic><topic>supported catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moghaddam, Mahdi</creatorcontrib><creatorcontrib>Peljo, Pekka</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moghaddam, Mahdi</au><au>Peljo, Pekka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Absorption in Electrocatalyst Layers Detected by Scanning Electrochemical Microscopy</atitle><jtitle>ChemElectroChem</jtitle><addtitle>ChemElectroChem</addtitle><date>2021-08-02</date><risdate>2021</risdate><volume>8</volume><issue>15</issue><spage>2950</spage><epage>2955</epage><pages>2950-2955</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>Scanning electrochemical microscopy (SECM) is able to track the local electrochemical activity of an electrolyte‐immersed substrate employing an ultra‐micro‐electrode (UME) in micrometer‐scale spatial resolution. In this study, SECM is employed to investigate the presence of oxygen in the electrocatalyst layers of polymer electrolyte membrane fuel cells and electrolyzers. Approach curves on electrocatalyst layers with the tip potential set for oxygen reduction reveal that a significant amount of oxygen is absorbed in the catalyst layer. We confirm that the coexistence of Nafion ionomer and carbon black leads to oxygen confinement. It is suggested that this oxygen is confined within the hydrophobic parts of the self‐assembled Nafion on the graphitic surfaces of the carbon black. Absorption of oxygen into the electrocatalyst layer only in the presence of Nafion (Nafion+Catalyst) is confirmed using scanning electrochemical microscopy. This is justified from a positive feedback when the tip approaches the layer containing both catalyst and Nafion. In contrast, a negative feedback is observed for both the catalyst and Nafion, when tested separately, indicating no significant amount of oxygen is absorbed into either of them.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34589380</pmid><doi>10.1002/celc.202100702</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2426-6789</orcidid><orcidid>https://orcid.org/0000-0002-1229-2261</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2021-08, Vol.8 (15), p.2950-2955
issn 2196-0216
2196-0216
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8457140
source Wiley Journals
subjects Carbon
Carbon black
Electrocatalysts
Electrolytes
Electrolytic cells
Ionomers
Microscopes
Microscopy
Nafion
Oxygen
oxygen confinement
Proton exchange membrane fuel cells
redox chemistry
scanning electrochemical microscopy
Spatial resolution
Substrates
supported catalysts
title Oxygen Absorption in Electrocatalyst Layers Detected by Scanning Electrochemical Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Absorption%20in%20Electrocatalyst%20Layers%20Detected%20by%20Scanning%20Electrochemical%20Microscopy&rft.jtitle=ChemElectroChem&rft.au=Moghaddam,%20Mahdi&rft.date=2021-08-02&rft.volume=8&rft.issue=15&rft.spage=2950&rft.epage=2955&rft.pages=2950-2955&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.202100702&rft_dat=%3Cproquest_pubme%3E2578147647%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565969668&rft_id=info:pmid/34589380&rfr_iscdi=true