Oxygen Absorption in Electrocatalyst Layers Detected by Scanning Electrochemical Microscopy
Scanning electrochemical microscopy (SECM) is able to track the local electrochemical activity of an electrolyte‐immersed substrate employing an ultra‐micro‐electrode (UME) in micrometer‐scale spatial resolution. In this study, SECM is employed to investigate the presence of oxygen in the electrocat...
Gespeichert in:
Veröffentlicht in: | ChemElectroChem 2021-08, Vol.8 (15), p.2950-2955 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2955 |
---|---|
container_issue | 15 |
container_start_page | 2950 |
container_title | ChemElectroChem |
container_volume | 8 |
creator | Moghaddam, Mahdi Peljo, Pekka |
description | Scanning electrochemical microscopy (SECM) is able to track the local electrochemical activity of an electrolyte‐immersed substrate employing an ultra‐micro‐electrode (UME) in micrometer‐scale spatial resolution. In this study, SECM is employed to investigate the presence of oxygen in the electrocatalyst layers of polymer electrolyte membrane fuel cells and electrolyzers. Approach curves on electrocatalyst layers with the tip potential set for oxygen reduction reveal that a significant amount of oxygen is absorbed in the catalyst layer. We confirm that the coexistence of Nafion ionomer and carbon black leads to oxygen confinement. It is suggested that this oxygen is confined within the hydrophobic parts of the self‐assembled Nafion on the graphitic surfaces of the carbon black.
Absorption of oxygen into the electrocatalyst layer only in the presence of Nafion (Nafion+Catalyst) is confirmed using scanning electrochemical microscopy. This is justified from a positive feedback when the tip approaches the layer containing both catalyst and Nafion. In contrast, a negative feedback is observed for both the catalyst and Nafion, when tested separately, indicating no significant amount of oxygen is absorbed into either of them. |
doi_str_mv | 10.1002/celc.202100702 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8457140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578147647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4682-dfab8538145149ec1479fd64be97802fb34153d24ab14cfe9fdfa144e40d22b63</originalsourceid><addsrcrecordid>eNqFkb1PwzAQxS0Eoqh0ZUSRWFhabMdxkgWpKuVDKuoATAyW41yKUWoXOwXy3-OqpRQWJvt8Pz-9u4fQCcEDgjG9UFCrAcU0FCmme-iIkpz3Q833d-4d1PP-FWNMCE7ijB-iTsySLI8zfISep5_tDEw0LLx1i0ZbE2kTjWtQjbNKNrJufRNNZAvOR1fQhHcoo6KNHpQ0RpvZln2BuVayju61ctYru2iP0UElaw-9zdlFT9fjx9FtfzK9uRsNJ33FeEb7ZSWLLBgjLCEsB0VYmlclZwXkaYZpVcSMJHFJmSwIUxWEZiUJY8BwSWnB4y66XOsulsUcSgWmcbIWC6fn0rXCSi1-d4x-ETP7LjKWpIThIHC-EXD2bQm-EXPtw3JracAuvaBJGtylnKUBPfuDvtqlM2G8QPEk5znnWaAGa2q1Cu-g2pohWKyiE6voxDa68OF0d4Qt_h1UAPI18KFraP-RE6PxZPQj_gVeOKak</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565969668</pqid></control><display><type>article</type><title>Oxygen Absorption in Electrocatalyst Layers Detected by Scanning Electrochemical Microscopy</title><source>Wiley Journals</source><creator>Moghaddam, Mahdi ; Peljo, Pekka</creator><creatorcontrib>Moghaddam, Mahdi ; Peljo, Pekka</creatorcontrib><description>Scanning electrochemical microscopy (SECM) is able to track the local electrochemical activity of an electrolyte‐immersed substrate employing an ultra‐micro‐electrode (UME) in micrometer‐scale spatial resolution. In this study, SECM is employed to investigate the presence of oxygen in the electrocatalyst layers of polymer electrolyte membrane fuel cells and electrolyzers. Approach curves on electrocatalyst layers with the tip potential set for oxygen reduction reveal that a significant amount of oxygen is absorbed in the catalyst layer. We confirm that the coexistence of Nafion ionomer and carbon black leads to oxygen confinement. It is suggested that this oxygen is confined within the hydrophobic parts of the self‐assembled Nafion on the graphitic surfaces of the carbon black.
Absorption of oxygen into the electrocatalyst layer only in the presence of Nafion (Nafion+Catalyst) is confirmed using scanning electrochemical microscopy. This is justified from a positive feedback when the tip approaches the layer containing both catalyst and Nafion. In contrast, a negative feedback is observed for both the catalyst and Nafion, when tested separately, indicating no significant amount of oxygen is absorbed into either of them.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.202100702</identifier><identifier>PMID: 34589380</identifier><language>eng</language><publisher>Germany: John Wiley & Sons, Inc</publisher><subject>Carbon ; Carbon black ; Electrocatalysts ; Electrolytes ; Electrolytic cells ; Ionomers ; Microscopes ; Microscopy ; Nafion ; Oxygen ; oxygen confinement ; Proton exchange membrane fuel cells ; redox chemistry ; scanning electrochemical microscopy ; Spatial resolution ; Substrates ; supported catalysts</subject><ispartof>ChemElectroChem, 2021-08, Vol.8 (15), p.2950-2955</ispartof><rights>2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH</rights><rights>2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4682-dfab8538145149ec1479fd64be97802fb34153d24ab14cfe9fdfa144e40d22b63</citedby><cites>FETCH-LOGICAL-c4682-dfab8538145149ec1479fd64be97802fb34153d24ab14cfe9fdfa144e40d22b63</cites><orcidid>0000-0003-2426-6789 ; 0000-0002-1229-2261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.202100702$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.202100702$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34589380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moghaddam, Mahdi</creatorcontrib><creatorcontrib>Peljo, Pekka</creatorcontrib><title>Oxygen Absorption in Electrocatalyst Layers Detected by Scanning Electrochemical Microscopy</title><title>ChemElectroChem</title><addtitle>ChemElectroChem</addtitle><description>Scanning electrochemical microscopy (SECM) is able to track the local electrochemical activity of an electrolyte‐immersed substrate employing an ultra‐micro‐electrode (UME) in micrometer‐scale spatial resolution. In this study, SECM is employed to investigate the presence of oxygen in the electrocatalyst layers of polymer electrolyte membrane fuel cells and electrolyzers. Approach curves on electrocatalyst layers with the tip potential set for oxygen reduction reveal that a significant amount of oxygen is absorbed in the catalyst layer. We confirm that the coexistence of Nafion ionomer and carbon black leads to oxygen confinement. It is suggested that this oxygen is confined within the hydrophobic parts of the self‐assembled Nafion on the graphitic surfaces of the carbon black.
Absorption of oxygen into the electrocatalyst layer only in the presence of Nafion (Nafion+Catalyst) is confirmed using scanning electrochemical microscopy. This is justified from a positive feedback when the tip approaches the layer containing both catalyst and Nafion. In contrast, a negative feedback is observed for both the catalyst and Nafion, when tested separately, indicating no significant amount of oxygen is absorbed into either of them.</description><subject>Carbon</subject><subject>Carbon black</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Ionomers</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Nafion</subject><subject>Oxygen</subject><subject>oxygen confinement</subject><subject>Proton exchange membrane fuel cells</subject><subject>redox chemistry</subject><subject>scanning electrochemical microscopy</subject><subject>Spatial resolution</subject><subject>Substrates</subject><subject>supported catalysts</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkb1PwzAQxS0Eoqh0ZUSRWFhabMdxkgWpKuVDKuoATAyW41yKUWoXOwXy3-OqpRQWJvt8Pz-9u4fQCcEDgjG9UFCrAcU0FCmme-iIkpz3Q833d-4d1PP-FWNMCE7ijB-iTsySLI8zfISep5_tDEw0LLx1i0ZbE2kTjWtQjbNKNrJufRNNZAvOR1fQhHcoo6KNHpQ0RpvZln2BuVayju61ctYru2iP0UElaw-9zdlFT9fjx9FtfzK9uRsNJ33FeEb7ZSWLLBgjLCEsB0VYmlclZwXkaYZpVcSMJHFJmSwIUxWEZiUJY8BwSWnB4y66XOsulsUcSgWmcbIWC6fn0rXCSi1-d4x-ETP7LjKWpIThIHC-EXD2bQm-EXPtw3JracAuvaBJGtylnKUBPfuDvtqlM2G8QPEk5znnWaAGa2q1Cu-g2pohWKyiE6voxDa68OF0d4Qt_h1UAPI18KFraP-RE6PxZPQj_gVeOKak</recordid><startdate>20210802</startdate><enddate>20210802</enddate><creator>Moghaddam, Mahdi</creator><creator>Peljo, Pekka</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2426-6789</orcidid><orcidid>https://orcid.org/0000-0002-1229-2261</orcidid></search><sort><creationdate>20210802</creationdate><title>Oxygen Absorption in Electrocatalyst Layers Detected by Scanning Electrochemical Microscopy</title><author>Moghaddam, Mahdi ; Peljo, Pekka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4682-dfab8538145149ec1479fd64be97802fb34153d24ab14cfe9fdfa144e40d22b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Carbon black</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Ionomers</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Nafion</topic><topic>Oxygen</topic><topic>oxygen confinement</topic><topic>Proton exchange membrane fuel cells</topic><topic>redox chemistry</topic><topic>scanning electrochemical microscopy</topic><topic>Spatial resolution</topic><topic>Substrates</topic><topic>supported catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moghaddam, Mahdi</creatorcontrib><creatorcontrib>Peljo, Pekka</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moghaddam, Mahdi</au><au>Peljo, Pekka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Absorption in Electrocatalyst Layers Detected by Scanning Electrochemical Microscopy</atitle><jtitle>ChemElectroChem</jtitle><addtitle>ChemElectroChem</addtitle><date>2021-08-02</date><risdate>2021</risdate><volume>8</volume><issue>15</issue><spage>2950</spage><epage>2955</epage><pages>2950-2955</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>Scanning electrochemical microscopy (SECM) is able to track the local electrochemical activity of an electrolyte‐immersed substrate employing an ultra‐micro‐electrode (UME) in micrometer‐scale spatial resolution. In this study, SECM is employed to investigate the presence of oxygen in the electrocatalyst layers of polymer electrolyte membrane fuel cells and electrolyzers. Approach curves on electrocatalyst layers with the tip potential set for oxygen reduction reveal that a significant amount of oxygen is absorbed in the catalyst layer. We confirm that the coexistence of Nafion ionomer and carbon black leads to oxygen confinement. It is suggested that this oxygen is confined within the hydrophobic parts of the self‐assembled Nafion on the graphitic surfaces of the carbon black.
Absorption of oxygen into the electrocatalyst layer only in the presence of Nafion (Nafion+Catalyst) is confirmed using scanning electrochemical microscopy. This is justified from a positive feedback when the tip approaches the layer containing both catalyst and Nafion. In contrast, a negative feedback is observed for both the catalyst and Nafion, when tested separately, indicating no significant amount of oxygen is absorbed into either of them.</abstract><cop>Germany</cop><pub>John Wiley & Sons, Inc</pub><pmid>34589380</pmid><doi>10.1002/celc.202100702</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2426-6789</orcidid><orcidid>https://orcid.org/0000-0002-1229-2261</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-0216 |
ispartof | ChemElectroChem, 2021-08, Vol.8 (15), p.2950-2955 |
issn | 2196-0216 2196-0216 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8457140 |
source | Wiley Journals |
subjects | Carbon Carbon black Electrocatalysts Electrolytes Electrolytic cells Ionomers Microscopes Microscopy Nafion Oxygen oxygen confinement Proton exchange membrane fuel cells redox chemistry scanning electrochemical microscopy Spatial resolution Substrates supported catalysts |
title | Oxygen Absorption in Electrocatalyst Layers Detected by Scanning Electrochemical Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Absorption%20in%20Electrocatalyst%20Layers%20Detected%20by%20Scanning%20Electrochemical%20Microscopy&rft.jtitle=ChemElectroChem&rft.au=Moghaddam,%20Mahdi&rft.date=2021-08-02&rft.volume=8&rft.issue=15&rft.spage=2950&rft.epage=2955&rft.pages=2950-2955&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.202100702&rft_dat=%3Cproquest_pubme%3E2578147647%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565969668&rft_id=info:pmid/34589380&rfr_iscdi=true |