Structural Transformation of Surface‐Confined Porphyrin Networks by Addition of Co Atoms

The self‐assembly of a nickel‐porphyrin derivative (Ni‐DPPyP) containing two pyridyl coordinating sites and two pentyl chains at trans meso positions was studied with scanning tunneling microscopy (STM), X‐ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) on Au(111). De...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2021-08, Vol.27 (48), p.12430-12436
Hauptverfasser: Baker Cortés, Brian D., Enache, Mihaela, Küster, Kathrin, Studener, Florian, Lee, Tien‐Lin, Marets, Nicolas, Bulach, Véronique, Hosseini, Mir Wais, Stöhr, Meike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12436
container_issue 48
container_start_page 12430
container_title Chemistry : a European journal
container_volume 27
creator Baker Cortés, Brian D.
Enache, Mihaela
Küster, Kathrin
Studener, Florian
Lee, Tien‐Lin
Marets, Nicolas
Bulach, Véronique
Hosseini, Mir Wais
Stöhr, Meike
description The self‐assembly of a nickel‐porphyrin derivative (Ni‐DPPyP) containing two pyridyl coordinating sites and two pentyl chains at trans meso positions was studied with scanning tunneling microscopy (STM), X‐ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) on Au(111). Deposition of Ni‐DPPyP onto Au(111) gave rise to a close‐packed network for coverages smaller or equal to one monolayer as revealed by STM and LEED. The molecular arrangement of this two‐dimensional network is stabilized via hydrogen bonds formed between the pyridyl's nitrogen and hydrogen atoms from the pyrrole groups of neighboring molecules. Subsequent deposition of cobalt atoms onto the close‐packed network and post‐deposition annealing at 423 K led to the formation of a Co‐coordinated hexagonal porous network. As confirmed by XPS measurements, the porous network is stabilized by metal‐ligand interactions between one cobalt atom and three pyridyl ligands, each pyridyl ligand coming from a different Ni‐DPPyP molecule. The structural transformation of a porphyrin‐based two‐dimensional network from its H‐bonded phase to a porous metal‐coordinated phase after the addition of Co‐atoms on Au(111) under ultra‐high vacuum conditions was inverstigated. The networks were characterized by scanning tunneling microscopy, low‐energy electron diffraction and X‐ray photoelectron spectroscopy.
doi_str_mv 10.1002/chem.202101217
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564511956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4457-e1769dd09b4be58fca019853aa1426fded4394d6832b454f53856c8b809cc83c3</originalsourceid><addsrcrecordid>eNqFkTtP3EAUhUcRKCyPNrUlGhpv5m1PE2ll8YhESCSgoRmN55EdsGeWGRu0HT-B35hfEqMloKRJdYv7naN77gHgE4JzBCH-rJe2n2OIEUQYVR_ADDGMSlJxtgVmUNCq5IyIHbCb8y2EUHBCPoIdQhEjiNEZuLkc0qiHMamuuEoqZBdTrwYfQxFdcTkmp7T99fTcxOB8sKb4EdNquU4-FBd2eIzpLhftulgY4_-ImlgshtjnfbDtVJftwevcA9cnx1fNWXn-_fRrszgvNaWsKi2quDAGipa2ltVOK4hEzYhSiGLujDWUCGp4TXBLGXWM1Izruq2h0LommuyBLxvf1dj21mgbhimNXCXfq7SWUXn59yb4pfwZH2RNGZ8-NBkcvRqkeD_aPMjeZ227TgUbxywxoxRVmFVwQg__QW_jmMIUb6I4ZQgJxidqvqF0ijkn696OQVC-1CZfapNvtU0CsRE8-s6u_0PL5uz427v2N1vDnC4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564511956</pqid></control><display><type>article</type><title>Structural Transformation of Surface‐Confined Porphyrin Networks by Addition of Co Atoms</title><source>Wiley-Blackwell Journals</source><creator>Baker Cortés, Brian D. ; Enache, Mihaela ; Küster, Kathrin ; Studener, Florian ; Lee, Tien‐Lin ; Marets, Nicolas ; Bulach, Véronique ; Hosseini, Mir Wais ; Stöhr, Meike</creator><creatorcontrib>Baker Cortés, Brian D. ; Enache, Mihaela ; Küster, Kathrin ; Studener, Florian ; Lee, Tien‐Lin ; Marets, Nicolas ; Bulach, Véronique ; Hosseini, Mir Wais ; Stöhr, Meike</creatorcontrib><description>The self‐assembly of a nickel‐porphyrin derivative (Ni‐DPPyP) containing two pyridyl coordinating sites and two pentyl chains at trans meso positions was studied with scanning tunneling microscopy (STM), X‐ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) on Au(111). Deposition of Ni‐DPPyP onto Au(111) gave rise to a close‐packed network for coverages smaller or equal to one monolayer as revealed by STM and LEED. The molecular arrangement of this two‐dimensional network is stabilized via hydrogen bonds formed between the pyridyl's nitrogen and hydrogen atoms from the pyrrole groups of neighboring molecules. Subsequent deposition of cobalt atoms onto the close‐packed network and post‐deposition annealing at 423 K led to the formation of a Co‐coordinated hexagonal porous network. As confirmed by XPS measurements, the porous network is stabilized by metal‐ligand interactions between one cobalt atom and three pyridyl ligands, each pyridyl ligand coming from a different Ni‐DPPyP molecule. The structural transformation of a porphyrin‐based two‐dimensional network from its H‐bonded phase to a porous metal‐coordinated phase after the addition of Co‐atoms on Au(111) under ultra‐high vacuum conditions was inverstigated. The networks were characterized by scanning tunneling microscopy, low‐energy electron diffraction and X‐ray photoelectron spectroscopy.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202101217</identifier><identifier>PMID: 34153154</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemistry ; Cobalt ; Deposition ; Electron diffraction ; Hydrogen atoms ; Hydrogen bonding ; Hydrogen bonds ; Ligands ; Low energy electron diffraction ; metal-organic coordination networks ; molecular self-assemblies ; Nickel ; Photoelectron spectroscopy ; Photoelectrons ; Porphyrins ; Scanning tunneling microscopy ; X-ray photoelectron spectroscopy</subject><ispartof>Chemistry : a European journal, 2021-08, Vol.27 (48), p.12430-12436</ispartof><rights>2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4457-e1769dd09b4be58fca019853aa1426fded4394d6832b454f53856c8b809cc83c3</citedby><cites>FETCH-LOGICAL-c4457-e1769dd09b4be58fca019853aa1426fded4394d6832b454f53856c8b809cc83c3</cites><orcidid>0000-0002-1478-6118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202101217$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202101217$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Baker Cortés, Brian D.</creatorcontrib><creatorcontrib>Enache, Mihaela</creatorcontrib><creatorcontrib>Küster, Kathrin</creatorcontrib><creatorcontrib>Studener, Florian</creatorcontrib><creatorcontrib>Lee, Tien‐Lin</creatorcontrib><creatorcontrib>Marets, Nicolas</creatorcontrib><creatorcontrib>Bulach, Véronique</creatorcontrib><creatorcontrib>Hosseini, Mir Wais</creatorcontrib><creatorcontrib>Stöhr, Meike</creatorcontrib><title>Structural Transformation of Surface‐Confined Porphyrin Networks by Addition of Co Atoms</title><title>Chemistry : a European journal</title><description>The self‐assembly of a nickel‐porphyrin derivative (Ni‐DPPyP) containing two pyridyl coordinating sites and two pentyl chains at trans meso positions was studied with scanning tunneling microscopy (STM), X‐ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) on Au(111). Deposition of Ni‐DPPyP onto Au(111) gave rise to a close‐packed network for coverages smaller or equal to one monolayer as revealed by STM and LEED. The molecular arrangement of this two‐dimensional network is stabilized via hydrogen bonds formed between the pyridyl's nitrogen and hydrogen atoms from the pyrrole groups of neighboring molecules. Subsequent deposition of cobalt atoms onto the close‐packed network and post‐deposition annealing at 423 K led to the formation of a Co‐coordinated hexagonal porous network. As confirmed by XPS measurements, the porous network is stabilized by metal‐ligand interactions between one cobalt atom and three pyridyl ligands, each pyridyl ligand coming from a different Ni‐DPPyP molecule. The structural transformation of a porphyrin‐based two‐dimensional network from its H‐bonded phase to a porous metal‐coordinated phase after the addition of Co‐atoms on Au(111) under ultra‐high vacuum conditions was inverstigated. The networks were characterized by scanning tunneling microscopy, low‐energy electron diffraction and X‐ray photoelectron spectroscopy.</description><subject>Chemistry</subject><subject>Cobalt</subject><subject>Deposition</subject><subject>Electron diffraction</subject><subject>Hydrogen atoms</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Ligands</subject><subject>Low energy electron diffraction</subject><subject>metal-organic coordination networks</subject><subject>molecular self-assemblies</subject><subject>Nickel</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Porphyrins</subject><subject>Scanning tunneling microscopy</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkTtP3EAUhUcRKCyPNrUlGhpv5m1PE2ll8YhESCSgoRmN55EdsGeWGRu0HT-B35hfEqMloKRJdYv7naN77gHgE4JzBCH-rJe2n2OIEUQYVR_ADDGMSlJxtgVmUNCq5IyIHbCb8y2EUHBCPoIdQhEjiNEZuLkc0qiHMamuuEoqZBdTrwYfQxFdcTkmp7T99fTcxOB8sKb4EdNquU4-FBd2eIzpLhftulgY4_-ImlgshtjnfbDtVJftwevcA9cnx1fNWXn-_fRrszgvNaWsKi2quDAGipa2ltVOK4hEzYhSiGLujDWUCGp4TXBLGXWM1Izruq2h0LommuyBLxvf1dj21mgbhimNXCXfq7SWUXn59yb4pfwZH2RNGZ8-NBkcvRqkeD_aPMjeZ227TgUbxywxoxRVmFVwQg__QW_jmMIUb6I4ZQgJxidqvqF0ijkn696OQVC-1CZfapNvtU0CsRE8-s6u_0PL5uz427v2N1vDnC4</recordid><startdate>20210825</startdate><enddate>20210825</enddate><creator>Baker Cortés, Brian D.</creator><creator>Enache, Mihaela</creator><creator>Küster, Kathrin</creator><creator>Studener, Florian</creator><creator>Lee, Tien‐Lin</creator><creator>Marets, Nicolas</creator><creator>Bulach, Véronique</creator><creator>Hosseini, Mir Wais</creator><creator>Stöhr, Meike</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1478-6118</orcidid></search><sort><creationdate>20210825</creationdate><title>Structural Transformation of Surface‐Confined Porphyrin Networks by Addition of Co Atoms</title><author>Baker Cortés, Brian D. ; Enache, Mihaela ; Küster, Kathrin ; Studener, Florian ; Lee, Tien‐Lin ; Marets, Nicolas ; Bulach, Véronique ; Hosseini, Mir Wais ; Stöhr, Meike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4457-e1769dd09b4be58fca019853aa1426fded4394d6832b454f53856c8b809cc83c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Cobalt</topic><topic>Deposition</topic><topic>Electron diffraction</topic><topic>Hydrogen atoms</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Ligands</topic><topic>Low energy electron diffraction</topic><topic>metal-organic coordination networks</topic><topic>molecular self-assemblies</topic><topic>Nickel</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Porphyrins</topic><topic>Scanning tunneling microscopy</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker Cortés, Brian D.</creatorcontrib><creatorcontrib>Enache, Mihaela</creatorcontrib><creatorcontrib>Küster, Kathrin</creatorcontrib><creatorcontrib>Studener, Florian</creatorcontrib><creatorcontrib>Lee, Tien‐Lin</creatorcontrib><creatorcontrib>Marets, Nicolas</creatorcontrib><creatorcontrib>Bulach, Véronique</creatorcontrib><creatorcontrib>Hosseini, Mir Wais</creatorcontrib><creatorcontrib>Stöhr, Meike</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker Cortés, Brian D.</au><au>Enache, Mihaela</au><au>Küster, Kathrin</au><au>Studener, Florian</au><au>Lee, Tien‐Lin</au><au>Marets, Nicolas</au><au>Bulach, Véronique</au><au>Hosseini, Mir Wais</au><au>Stöhr, Meike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Transformation of Surface‐Confined Porphyrin Networks by Addition of Co Atoms</atitle><jtitle>Chemistry : a European journal</jtitle><date>2021-08-25</date><risdate>2021</risdate><volume>27</volume><issue>48</issue><spage>12430</spage><epage>12436</epage><pages>12430-12436</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The self‐assembly of a nickel‐porphyrin derivative (Ni‐DPPyP) containing two pyridyl coordinating sites and two pentyl chains at trans meso positions was studied with scanning tunneling microscopy (STM), X‐ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) on Au(111). Deposition of Ni‐DPPyP onto Au(111) gave rise to a close‐packed network for coverages smaller or equal to one monolayer as revealed by STM and LEED. The molecular arrangement of this two‐dimensional network is stabilized via hydrogen bonds formed between the pyridyl's nitrogen and hydrogen atoms from the pyrrole groups of neighboring molecules. Subsequent deposition of cobalt atoms onto the close‐packed network and post‐deposition annealing at 423 K led to the formation of a Co‐coordinated hexagonal porous network. As confirmed by XPS measurements, the porous network is stabilized by metal‐ligand interactions between one cobalt atom and three pyridyl ligands, each pyridyl ligand coming from a different Ni‐DPPyP molecule. The structural transformation of a porphyrin‐based two‐dimensional network from its H‐bonded phase to a porous metal‐coordinated phase after the addition of Co‐atoms on Au(111) under ultra‐high vacuum conditions was inverstigated. The networks were characterized by scanning tunneling microscopy, low‐energy electron diffraction and X‐ray photoelectron spectroscopy.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34153154</pmid><doi>10.1002/chem.202101217</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1478-6118</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2021-08, Vol.27 (48), p.12430-12436
issn 0947-6539
1521-3765
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456947
source Wiley-Blackwell Journals
subjects Chemistry
Cobalt
Deposition
Electron diffraction
Hydrogen atoms
Hydrogen bonding
Hydrogen bonds
Ligands
Low energy electron diffraction
metal-organic coordination networks
molecular self-assemblies
Nickel
Photoelectron spectroscopy
Photoelectrons
Porphyrins
Scanning tunneling microscopy
X-ray photoelectron spectroscopy
title Structural Transformation of Surface‐Confined Porphyrin Networks by Addition of Co Atoms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A35%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Transformation%20of%20Surface%E2%80%90Confined%20Porphyrin%20Networks%20by%20Addition%20of%20Co%20Atoms&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Baker%20Cort%C3%A9s,%20Brian%20D.&rft.date=2021-08-25&rft.volume=27&rft.issue=48&rft.spage=12430&rft.epage=12436&rft.pages=12430-12436&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202101217&rft_dat=%3Cproquest_pubme%3E2564511956%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564511956&rft_id=info:pmid/34153154&rfr_iscdi=true