Asymmetric Synthesis of 2‐Arylindolines and 2,2‐Disubstituted Indolines by Kinetic Resolution

Kinetic resolution of 2‐arylindolines (2,3‐dihydroindoles) was achieved by treatment of their N‐tert‐butoxycarbonyl (Boc) derivatives with n‐butyllithium and sparteine in toluene at −78 °C followed by electrophilic quench. The unreacted starting materials together with the 2,2‐disubstituted products...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2021-08, Vol.27 (45), p.11670-11675
Hauptverfasser: Choi, Anthony, El‐Tunsi, Ashraf, Wang, Yuhang, Meijer, Anthony J. H. M., Li, Jia, Li, Xiabing, Proietti Silvestri, Ilaria, Coldham, Iain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11675
container_issue 45
container_start_page 11670
container_title Chemistry : a European journal
container_volume 27
creator Choi, Anthony
El‐Tunsi, Ashraf
Wang, Yuhang
Meijer, Anthony J. H. M.
Li, Jia
Li, Xiabing
Proietti Silvestri, Ilaria
Coldham, Iain
description Kinetic resolution of 2‐arylindolines (2,3‐dihydroindoles) was achieved by treatment of their N‐tert‐butoxycarbonyl (Boc) derivatives with n‐butyllithium and sparteine in toluene at −78 °C followed by electrophilic quench. The unreacted starting materials together with the 2,2‐disubstituted products could be isolated with high enantiomer ratios. Variable temperature NMR spectroscopy showed that the rate of Boc rotation was fast (ΔG≠≈57 kJ/mol at 195 K). This was corroborated by DFT studies and by in situ ReactIR spectroscopy. The enantioenriched N‐Boc‐2‐arylindolines were converted to 2,2‐disubstituted products without significant loss in enantiopurity. Hence, either enantiomer of the 2,2‐disubstituted products could be obtained with high selectivity from the same enantiomer of the chiral ligand sparteine (one from the kinetic resolution and the other from subsequent lithiation‐trapping of the recovered starting material). Secondary amine products were prepared by removing the Boc group with acid to provide a way to access highly enantioenriched 2‐aryl and 2,2‐disubstituted indolines. Asymmetric synthesis of 2‐arylindolines was achieved by kinetic resolution with n‐butyllithium and the chiral ligand sparteine followed by electrophilic quench. The recovered starting materials and the 2,2‐disubstituted products were isolated with high enantiomer ratios. Variable temperature NMR spectroscopy and DFT studies were used to determine the rate of Boc rotation.
doi_str_mv 10.1002/chem.202101248
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539884919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4688-56da1fe481aed6e7c0bfeb10809ef1457b213a2867a3c956cc80d644678de3e63</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EokNhyxJFYsOCDL7H3iCNhkIripC4rC3HOWFcJXGxHVB2PALPyJPg0ZThsmHjY_l8_uTjH6GHBK8JxvSZ28G4ppgSTChXt9CKCEpq1khxG62w5k0tBdMn6F5KVxhjLRm7i04YJwRLSVfIbtIyjpCjd9X7Zco7SD5Voa_oj2_fN3EZ_NSFskCq7NRV9On-_IVPc5uyz3OGrro4Eu1SvS6bXFzvIIVhzj5M99Gd3g4JHtzUU_Tx5dmH7Xl9-fbVxXZzWTsulaqF7CzpgStioZPQONz20BKssIaecNG0lDBLlWwsc1pI5xTuJOeyUR0wkOwUPT94r-d2hM7BlKMdzHX0o42LCdabvzuT35lP4YtRXEjV8CJ4ciOI4fMMKZvRJwfDYCcIczK0fKRSXBNd0Mf_oFdhjlMZr1ASCymVFoVaHygXQ0oR-uNjCDb79Mw-PXNMr1x49OcIR_xXXAXQB-CrH2D5j85sz8_e_Jb_BCk7qbo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560566895</pqid></control><display><type>article</type><title>Asymmetric Synthesis of 2‐Arylindolines and 2,2‐Disubstituted Indolines by Kinetic Resolution</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Choi, Anthony ; El‐Tunsi, Ashraf ; Wang, Yuhang ; Meijer, Anthony J. H. M. ; Li, Jia ; Li, Xiabing ; Proietti Silvestri, Ilaria ; Coldham, Iain</creator><creatorcontrib>Choi, Anthony ; El‐Tunsi, Ashraf ; Wang, Yuhang ; Meijer, Anthony J. H. M. ; Li, Jia ; Li, Xiabing ; Proietti Silvestri, Ilaria ; Coldham, Iain</creatorcontrib><description>Kinetic resolution of 2‐arylindolines (2,3‐dihydroindoles) was achieved by treatment of their N‐tert‐butoxycarbonyl (Boc) derivatives with n‐butyllithium and sparteine in toluene at −78 °C followed by electrophilic quench. The unreacted starting materials together with the 2,2‐disubstituted products could be isolated with high enantiomer ratios. Variable temperature NMR spectroscopy showed that the rate of Boc rotation was fast (ΔG≠≈57 kJ/mol at 195 K). This was corroborated by DFT studies and by in situ ReactIR spectroscopy. The enantioenriched N‐Boc‐2‐arylindolines were converted to 2,2‐disubstituted products without significant loss in enantiopurity. Hence, either enantiomer of the 2,2‐disubstituted products could be obtained with high selectivity from the same enantiomer of the chiral ligand sparteine (one from the kinetic resolution and the other from subsequent lithiation‐trapping of the recovered starting material). Secondary amine products were prepared by removing the Boc group with acid to provide a way to access highly enantioenriched 2‐aryl and 2,2‐disubstituted indolines. Asymmetric synthesis of 2‐arylindolines was achieved by kinetic resolution with n‐butyllithium and the chiral ligand sparteine followed by electrophilic quench. The recovered starting materials and the 2,2‐disubstituted products were isolated with high enantiomer ratios. Variable temperature NMR spectroscopy and DFT studies were used to determine the rate of Boc rotation.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202101248</identifier><identifier>PMID: 34110662</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Asymmetric synthesis ; Butyllithium ; Chemistry ; Enantiomers ; enantioselectivity ; heterocycles ; Heterocyclic compounds ; Indoles ; kinetic resolution ; Kinetics ; lithiation ; Magnetic resonance spectroscopy ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Selectivity ; Sparteine ; Spectroscopy ; Spectrum analysis ; Stereoisomerism ; Toluene</subject><ispartof>Chemistry : a European journal, 2021-08, Vol.27 (45), p.11670-11675</ispartof><rights>2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH</rights><rights>2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4688-56da1fe481aed6e7c0bfeb10809ef1457b213a2867a3c956cc80d644678de3e63</citedby><cites>FETCH-LOGICAL-c4688-56da1fe481aed6e7c0bfeb10809ef1457b213a2867a3c956cc80d644678de3e63</cites><orcidid>0000-0003-4803-3488 ; 0000-0003-4130-8805 ; 0000-0003-4602-6292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202101248$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202101248$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34110662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Anthony</creatorcontrib><creatorcontrib>El‐Tunsi, Ashraf</creatorcontrib><creatorcontrib>Wang, Yuhang</creatorcontrib><creatorcontrib>Meijer, Anthony J. H. M.</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Li, Xiabing</creatorcontrib><creatorcontrib>Proietti Silvestri, Ilaria</creatorcontrib><creatorcontrib>Coldham, Iain</creatorcontrib><title>Asymmetric Synthesis of 2‐Arylindolines and 2,2‐Disubstituted Indolines by Kinetic Resolution</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Kinetic resolution of 2‐arylindolines (2,3‐dihydroindoles) was achieved by treatment of their N‐tert‐butoxycarbonyl (Boc) derivatives with n‐butyllithium and sparteine in toluene at −78 °C followed by electrophilic quench. The unreacted starting materials together with the 2,2‐disubstituted products could be isolated with high enantiomer ratios. Variable temperature NMR spectroscopy showed that the rate of Boc rotation was fast (ΔG≠≈57 kJ/mol at 195 K). This was corroborated by DFT studies and by in situ ReactIR spectroscopy. The enantioenriched N‐Boc‐2‐arylindolines were converted to 2,2‐disubstituted products without significant loss in enantiopurity. Hence, either enantiomer of the 2,2‐disubstituted products could be obtained with high selectivity from the same enantiomer of the chiral ligand sparteine (one from the kinetic resolution and the other from subsequent lithiation‐trapping of the recovered starting material). Secondary amine products were prepared by removing the Boc group with acid to provide a way to access highly enantioenriched 2‐aryl and 2,2‐disubstituted indolines. Asymmetric synthesis of 2‐arylindolines was achieved by kinetic resolution with n‐butyllithium and the chiral ligand sparteine followed by electrophilic quench. The recovered starting materials and the 2,2‐disubstituted products were isolated with high enantiomer ratios. Variable temperature NMR spectroscopy and DFT studies were used to determine the rate of Boc rotation.</description><subject>Asymmetric synthesis</subject><subject>Butyllithium</subject><subject>Chemistry</subject><subject>Enantiomers</subject><subject>enantioselectivity</subject><subject>heterocycles</subject><subject>Heterocyclic compounds</subject><subject>Indoles</subject><subject>kinetic resolution</subject><subject>Kinetics</subject><subject>lithiation</subject><subject>Magnetic resonance spectroscopy</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Selectivity</subject><subject>Sparteine</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stereoisomerism</subject><subject>Toluene</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhi0EokNhyxJFYsOCDL7H3iCNhkIripC4rC3HOWFcJXGxHVB2PALPyJPg0ZThsmHjY_l8_uTjH6GHBK8JxvSZ28G4ppgSTChXt9CKCEpq1khxG62w5k0tBdMn6F5KVxhjLRm7i04YJwRLSVfIbtIyjpCjd9X7Zco7SD5Voa_oj2_fN3EZ_NSFskCq7NRV9On-_IVPc5uyz3OGrro4Eu1SvS6bXFzvIIVhzj5M99Gd3g4JHtzUU_Tx5dmH7Xl9-fbVxXZzWTsulaqF7CzpgStioZPQONz20BKssIaecNG0lDBLlWwsc1pI5xTuJOeyUR0wkOwUPT94r-d2hM7BlKMdzHX0o42LCdabvzuT35lP4YtRXEjV8CJ4ciOI4fMMKZvRJwfDYCcIczK0fKRSXBNd0Mf_oFdhjlMZr1ASCymVFoVaHygXQ0oR-uNjCDb79Mw-PXNMr1x49OcIR_xXXAXQB-CrH2D5j85sz8_e_Jb_BCk7qbo</recordid><startdate>20210811</startdate><enddate>20210811</enddate><creator>Choi, Anthony</creator><creator>El‐Tunsi, Ashraf</creator><creator>Wang, Yuhang</creator><creator>Meijer, Anthony J. H. M.</creator><creator>Li, Jia</creator><creator>Li, Xiabing</creator><creator>Proietti Silvestri, Ilaria</creator><creator>Coldham, Iain</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4803-3488</orcidid><orcidid>https://orcid.org/0000-0003-4130-8805</orcidid><orcidid>https://orcid.org/0000-0003-4602-6292</orcidid></search><sort><creationdate>20210811</creationdate><title>Asymmetric Synthesis of 2‐Arylindolines and 2,2‐Disubstituted Indolines by Kinetic Resolution</title><author>Choi, Anthony ; El‐Tunsi, Ashraf ; Wang, Yuhang ; Meijer, Anthony J. H. M. ; Li, Jia ; Li, Xiabing ; Proietti Silvestri, Ilaria ; Coldham, Iain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4688-56da1fe481aed6e7c0bfeb10809ef1457b213a2867a3c956cc80d644678de3e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymmetric synthesis</topic><topic>Butyllithium</topic><topic>Chemistry</topic><topic>Enantiomers</topic><topic>enantioselectivity</topic><topic>heterocycles</topic><topic>Heterocyclic compounds</topic><topic>Indoles</topic><topic>kinetic resolution</topic><topic>Kinetics</topic><topic>lithiation</topic><topic>Magnetic resonance spectroscopy</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Selectivity</topic><topic>Sparteine</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stereoisomerism</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Anthony</creatorcontrib><creatorcontrib>El‐Tunsi, Ashraf</creatorcontrib><creatorcontrib>Wang, Yuhang</creatorcontrib><creatorcontrib>Meijer, Anthony J. H. M.</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Li, Xiabing</creatorcontrib><creatorcontrib>Proietti Silvestri, Ilaria</creatorcontrib><creatorcontrib>Coldham, Iain</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Anthony</au><au>El‐Tunsi, Ashraf</au><au>Wang, Yuhang</au><au>Meijer, Anthony J. H. M.</au><au>Li, Jia</au><au>Li, Xiabing</au><au>Proietti Silvestri, Ilaria</au><au>Coldham, Iain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Synthesis of 2‐Arylindolines and 2,2‐Disubstituted Indolines by Kinetic Resolution</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2021-08-11</date><risdate>2021</risdate><volume>27</volume><issue>45</issue><spage>11670</spage><epage>11675</epage><pages>11670-11675</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Kinetic resolution of 2‐arylindolines (2,3‐dihydroindoles) was achieved by treatment of their N‐tert‐butoxycarbonyl (Boc) derivatives with n‐butyllithium and sparteine in toluene at −78 °C followed by electrophilic quench. The unreacted starting materials together with the 2,2‐disubstituted products could be isolated with high enantiomer ratios. Variable temperature NMR spectroscopy showed that the rate of Boc rotation was fast (ΔG≠≈57 kJ/mol at 195 K). This was corroborated by DFT studies and by in situ ReactIR spectroscopy. The enantioenriched N‐Boc‐2‐arylindolines were converted to 2,2‐disubstituted products without significant loss in enantiopurity. Hence, either enantiomer of the 2,2‐disubstituted products could be obtained with high selectivity from the same enantiomer of the chiral ligand sparteine (one from the kinetic resolution and the other from subsequent lithiation‐trapping of the recovered starting material). Secondary amine products were prepared by removing the Boc group with acid to provide a way to access highly enantioenriched 2‐aryl and 2,2‐disubstituted indolines. Asymmetric synthesis of 2‐arylindolines was achieved by kinetic resolution with n‐butyllithium and the chiral ligand sparteine followed by electrophilic quench. The recovered starting materials and the 2,2‐disubstituted products were isolated with high enantiomer ratios. Variable temperature NMR spectroscopy and DFT studies were used to determine the rate of Boc rotation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34110662</pmid><doi>10.1002/chem.202101248</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4803-3488</orcidid><orcidid>https://orcid.org/0000-0003-4130-8805</orcidid><orcidid>https://orcid.org/0000-0003-4602-6292</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2021-08, Vol.27 (45), p.11670-11675
issn 0947-6539
1521-3765
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456874
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Asymmetric synthesis
Butyllithium
Chemistry
Enantiomers
enantioselectivity
heterocycles
Heterocyclic compounds
Indoles
kinetic resolution
Kinetics
lithiation
Magnetic resonance spectroscopy
NMR
NMR spectroscopy
Nuclear magnetic resonance
Selectivity
Sparteine
Spectroscopy
Spectrum analysis
Stereoisomerism
Toluene
title Asymmetric Synthesis of 2‐Arylindolines and 2,2‐Disubstituted Indolines by Kinetic Resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Synthesis%20of%202%E2%80%90Arylindolines%20and%202,2%E2%80%90Disubstituted%20Indolines%20by%20Kinetic%20Resolution&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Choi,%20Anthony&rft.date=2021-08-11&rft.volume=27&rft.issue=45&rft.spage=11670&rft.epage=11675&rft.pages=11670-11675&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202101248&rft_dat=%3Cproquest_pubme%3E2539884919%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560566895&rft_id=info:pmid/34110662&rfr_iscdi=true