Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation

Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2021-09, Vol.120 (17), p.3732-3746
Hauptverfasser: Dongre, Aparna Vilas, Das, Sudip, Bellur, Asutosh, Kumar, Sanjeev, Chandrashekarmath, Anusha, Karmakar, Tarak, Balaram, Padmanabhan, Balasubramanian, Sundaram, Balaram, Hemalatha
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3746
container_issue 17
container_start_page 3732
container_title Biophysical journal
container_volume 120
creator Dongre, Aparna Vilas
Das, Sudip
Bellur, Asutosh
Kumar, Sanjeev
Chandrashekarmath, Anusha
Karmakar, Tarak
Balaram, Padmanabhan
Balasubramanian, Sundaram
Balaram, Hemalatha
description Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or β-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability.
doi_str_mv 10.1016/j.bpj.2021.07.014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349521006007</els_id><sourcerecordid>2555111827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-f4e219263260c63c29a3cae38ee3cc094667cef886bd648c630d6a55b635ed9c3</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpaDZpf0BvOvZiZyRZsk2hUELSFgI9tD0LWR53tdjSVpIDzq-Plg2FXnqagXnvDTMfIe8Z1AyYujnUw_FQc-CshrYG1rwiOyYbXgF06jXZAYCqRNPLS3KV0gGAcQnsDbkUjQDe9nxHxh85rjav0cx0MMklOoVI8x7pfjtiLE1cQspmcLPLGw0TNZ6aaPcGiwP907YgdX5cLY502GharXXeLW7EU9Jisgv-LbmYzJzw3Uu9Jr_u737efq0evn_5dvv5obIN73I1NchZz5XgCqwSlvdGWIOiQxTWQt8o1Vqcuk4No2q6IoFRGSkHJSSOvRXX5NM597gOC44WfS536WN0i4mbDsbpfyfe7fXv8Ki7RireqxLw4SUghj8rpqwXlyzOs_EY1qS5lJIx1vG2SNlZamNIKeL0dw0DfaKjD7rQ0Sc6Glpd6BTPx7MHyxMeHUadrENfXuci2qzH4P7jfga7a5lM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555111827</pqid></control><display><type>article</type><title>Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Dongre, Aparna Vilas ; Das, Sudip ; Bellur, Asutosh ; Kumar, Sanjeev ; Chandrashekarmath, Anusha ; Karmakar, Tarak ; Balaram, Padmanabhan ; Balasubramanian, Sundaram ; Balaram, Hemalatha</creator><creatorcontrib>Dongre, Aparna Vilas ; Das, Sudip ; Bellur, Asutosh ; Kumar, Sanjeev ; Chandrashekarmath, Anusha ; Karmakar, Tarak ; Balaram, Padmanabhan ; Balasubramanian, Sundaram ; Balaram, Hemalatha</creatorcontrib><description>Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or β-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2021.07.014</identifier><identifier>PMID: 34302792</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Biophysical journal, 2021-09, Vol.120 (17), p.3732-3746</ispartof><rights>2021 Biophysical Society</rights><rights>2021 Biophysical Society. 2021 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-f4e219263260c63c29a3cae38ee3cc094667cef886bd648c630d6a55b635ed9c3</citedby><cites>FETCH-LOGICAL-c428t-f4e219263260c63c29a3cae38ee3cc094667cef886bd648c630d6a55b635ed9c3</cites><orcidid>0000-0001-8776-449X ; 0000-0002-6577-933X ; 0000-0003-1609-9490 ; 0000-0002-8721-6247 ; 0000-0002-3355-6764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456296/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349521006007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids></links><search><creatorcontrib>Dongre, Aparna Vilas</creatorcontrib><creatorcontrib>Das, Sudip</creatorcontrib><creatorcontrib>Bellur, Asutosh</creatorcontrib><creatorcontrib>Kumar, Sanjeev</creatorcontrib><creatorcontrib>Chandrashekarmath, Anusha</creatorcontrib><creatorcontrib>Karmakar, Tarak</creatorcontrib><creatorcontrib>Balaram, Padmanabhan</creatorcontrib><creatorcontrib>Balasubramanian, Sundaram</creatorcontrib><creatorcontrib>Balaram, Hemalatha</creatorcontrib><title>Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation</title><title>Biophysical journal</title><description>Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or β-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability.</description><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhUVpaDZpf0BvOvZiZyRZsk2hUELSFgI9tD0LWR53tdjSVpIDzq-Plg2FXnqagXnvDTMfIe8Z1AyYujnUw_FQc-CshrYG1rwiOyYbXgF06jXZAYCqRNPLS3KV0gGAcQnsDbkUjQDe9nxHxh85rjav0cx0MMklOoVI8x7pfjtiLE1cQspmcLPLGw0TNZ6aaPcGiwP907YgdX5cLY502GharXXeLW7EU9Jisgv-LbmYzJzw3Uu9Jr_u737efq0evn_5dvv5obIN73I1NchZz5XgCqwSlvdGWIOiQxTWQt8o1Vqcuk4No2q6IoFRGSkHJSSOvRXX5NM597gOC44WfS536WN0i4mbDsbpfyfe7fXv8Ki7RireqxLw4SUghj8rpqwXlyzOs_EY1qS5lJIx1vG2SNlZamNIKeL0dw0DfaKjD7rQ0Sc6Glpd6BTPx7MHyxMeHUadrENfXuci2qzH4P7jfga7a5lM</recordid><startdate>20210907</startdate><enddate>20210907</enddate><creator>Dongre, Aparna Vilas</creator><creator>Das, Sudip</creator><creator>Bellur, Asutosh</creator><creator>Kumar, Sanjeev</creator><creator>Chandrashekarmath, Anusha</creator><creator>Karmakar, Tarak</creator><creator>Balaram, Padmanabhan</creator><creator>Balasubramanian, Sundaram</creator><creator>Balaram, Hemalatha</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8776-449X</orcidid><orcidid>https://orcid.org/0000-0002-6577-933X</orcidid><orcidid>https://orcid.org/0000-0003-1609-9490</orcidid><orcidid>https://orcid.org/0000-0002-8721-6247</orcidid><orcidid>https://orcid.org/0000-0002-3355-6764</orcidid></search><sort><creationdate>20210907</creationdate><title>Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation</title><author>Dongre, Aparna Vilas ; Das, Sudip ; Bellur, Asutosh ; Kumar, Sanjeev ; Chandrashekarmath, Anusha ; Karmakar, Tarak ; Balaram, Padmanabhan ; Balasubramanian, Sundaram ; Balaram, Hemalatha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-f4e219263260c63c29a3cae38ee3cc094667cef886bd648c630d6a55b635ed9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dongre, Aparna Vilas</creatorcontrib><creatorcontrib>Das, Sudip</creatorcontrib><creatorcontrib>Bellur, Asutosh</creatorcontrib><creatorcontrib>Kumar, Sanjeev</creatorcontrib><creatorcontrib>Chandrashekarmath, Anusha</creatorcontrib><creatorcontrib>Karmakar, Tarak</creatorcontrib><creatorcontrib>Balaram, Padmanabhan</creatorcontrib><creatorcontrib>Balasubramanian, Sundaram</creatorcontrib><creatorcontrib>Balaram, Hemalatha</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dongre, Aparna Vilas</au><au>Das, Sudip</au><au>Bellur, Asutosh</au><au>Kumar, Sanjeev</au><au>Chandrashekarmath, Anusha</au><au>Karmakar, Tarak</au><au>Balaram, Padmanabhan</au><au>Balasubramanian, Sundaram</au><au>Balaram, Hemalatha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation</atitle><jtitle>Biophysical journal</jtitle><date>2021-09-07</date><risdate>2021</risdate><volume>120</volume><issue>17</issue><spage>3732</spage><epage>3746</epage><pages>3732-3746</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or β-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability.</abstract><pub>Elsevier Inc</pub><pmid>34302792</pmid><doi>10.1016/j.bpj.2021.07.014</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8776-449X</orcidid><orcidid>https://orcid.org/0000-0002-6577-933X</orcidid><orcidid>https://orcid.org/0000-0003-1609-9490</orcidid><orcidid>https://orcid.org/0000-0002-8721-6247</orcidid><orcidid>https://orcid.org/0000-0002-3355-6764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2021-09, Vol.120 (17), p.3732-3746
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456296
source Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
title Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20the%20hyperthermostability%20of%20an%20archaeal%20enzyme%20induced%20by%20succinimide%20formation&rft.jtitle=Biophysical%20journal&rft.au=Dongre,%20Aparna%20Vilas&rft.date=2021-09-07&rft.volume=120&rft.issue=17&rft.spage=3732&rft.epage=3746&rft.pages=3732-3746&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2021.07.014&rft_dat=%3Cproquest_pubme%3E2555111827%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555111827&rft_id=info:pmid/34302792&rft_els_id=S0006349521006007&rfr_iscdi=true