Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation
Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2021-09, Vol.120 (17), p.3732-3746 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3746 |
---|---|
container_issue | 17 |
container_start_page | 3732 |
container_title | Biophysical journal |
container_volume | 120 |
creator | Dongre, Aparna Vilas Das, Sudip Bellur, Asutosh Kumar, Sanjeev Chandrashekarmath, Anusha Karmakar, Tarak Balaram, Padmanabhan Balasubramanian, Sundaram Balaram, Hemalatha |
description | Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or β-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability. |
doi_str_mv | 10.1016/j.bpj.2021.07.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349521006007</els_id><sourcerecordid>2555111827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-f4e219263260c63c29a3cae38ee3cc094667cef886bd648c630d6a55b635ed9c3</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpaDZpf0BvOvZiZyRZsk2hUELSFgI9tD0LWR53tdjSVpIDzq-Plg2FXnqagXnvDTMfIe8Z1AyYujnUw_FQc-CshrYG1rwiOyYbXgF06jXZAYCqRNPLS3KV0gGAcQnsDbkUjQDe9nxHxh85rjav0cx0MMklOoVI8x7pfjtiLE1cQspmcLPLGw0TNZ6aaPcGiwP907YgdX5cLY502GharXXeLW7EU9Jisgv-LbmYzJzw3Uu9Jr_u737efq0evn_5dvv5obIN73I1NchZz5XgCqwSlvdGWIOiQxTWQt8o1Vqcuk4No2q6IoFRGSkHJSSOvRXX5NM597gOC44WfS536WN0i4mbDsbpfyfe7fXv8Ki7RireqxLw4SUghj8rpqwXlyzOs_EY1qS5lJIx1vG2SNlZamNIKeL0dw0DfaKjD7rQ0Sc6Glpd6BTPx7MHyxMeHUadrENfXuci2qzH4P7jfga7a5lM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555111827</pqid></control><display><type>article</type><title>Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Dongre, Aparna Vilas ; Das, Sudip ; Bellur, Asutosh ; Kumar, Sanjeev ; Chandrashekarmath, Anusha ; Karmakar, Tarak ; Balaram, Padmanabhan ; Balasubramanian, Sundaram ; Balaram, Hemalatha</creator><creatorcontrib>Dongre, Aparna Vilas ; Das, Sudip ; Bellur, Asutosh ; Kumar, Sanjeev ; Chandrashekarmath, Anusha ; Karmakar, Tarak ; Balaram, Padmanabhan ; Balasubramanian, Sundaram ; Balaram, Hemalatha</creatorcontrib><description>Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or β-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2021.07.014</identifier><identifier>PMID: 34302792</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Biophysical journal, 2021-09, Vol.120 (17), p.3732-3746</ispartof><rights>2021 Biophysical Society</rights><rights>2021 Biophysical Society. 2021 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-f4e219263260c63c29a3cae38ee3cc094667cef886bd648c630d6a55b635ed9c3</citedby><cites>FETCH-LOGICAL-c428t-f4e219263260c63c29a3cae38ee3cc094667cef886bd648c630d6a55b635ed9c3</cites><orcidid>0000-0001-8776-449X ; 0000-0002-6577-933X ; 0000-0003-1609-9490 ; 0000-0002-8721-6247 ; 0000-0002-3355-6764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456296/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349521006007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids></links><search><creatorcontrib>Dongre, Aparna Vilas</creatorcontrib><creatorcontrib>Das, Sudip</creatorcontrib><creatorcontrib>Bellur, Asutosh</creatorcontrib><creatorcontrib>Kumar, Sanjeev</creatorcontrib><creatorcontrib>Chandrashekarmath, Anusha</creatorcontrib><creatorcontrib>Karmakar, Tarak</creatorcontrib><creatorcontrib>Balaram, Padmanabhan</creatorcontrib><creatorcontrib>Balasubramanian, Sundaram</creatorcontrib><creatorcontrib>Balaram, Hemalatha</creatorcontrib><title>Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation</title><title>Biophysical journal</title><description>Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or β-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability.</description><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhUVpaDZpf0BvOvZiZyRZsk2hUELSFgI9tD0LWR53tdjSVpIDzq-Plg2FXnqagXnvDTMfIe8Z1AyYujnUw_FQc-CshrYG1rwiOyYbXgF06jXZAYCqRNPLS3KV0gGAcQnsDbkUjQDe9nxHxh85rjav0cx0MMklOoVI8x7pfjtiLE1cQspmcLPLGw0TNZ6aaPcGiwP907YgdX5cLY502GharXXeLW7EU9Jisgv-LbmYzJzw3Uu9Jr_u737efq0evn_5dvv5obIN73I1NchZz5XgCqwSlvdGWIOiQxTWQt8o1Vqcuk4No2q6IoFRGSkHJSSOvRXX5NM597gOC44WfS536WN0i4mbDsbpfyfe7fXv8Ki7RireqxLw4SUghj8rpqwXlyzOs_EY1qS5lJIx1vG2SNlZamNIKeL0dw0DfaKjD7rQ0Sc6Glpd6BTPx7MHyxMeHUadrENfXuci2qzH4P7jfga7a5lM</recordid><startdate>20210907</startdate><enddate>20210907</enddate><creator>Dongre, Aparna Vilas</creator><creator>Das, Sudip</creator><creator>Bellur, Asutosh</creator><creator>Kumar, Sanjeev</creator><creator>Chandrashekarmath, Anusha</creator><creator>Karmakar, Tarak</creator><creator>Balaram, Padmanabhan</creator><creator>Balasubramanian, Sundaram</creator><creator>Balaram, Hemalatha</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8776-449X</orcidid><orcidid>https://orcid.org/0000-0002-6577-933X</orcidid><orcidid>https://orcid.org/0000-0003-1609-9490</orcidid><orcidid>https://orcid.org/0000-0002-8721-6247</orcidid><orcidid>https://orcid.org/0000-0002-3355-6764</orcidid></search><sort><creationdate>20210907</creationdate><title>Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation</title><author>Dongre, Aparna Vilas ; Das, Sudip ; Bellur, Asutosh ; Kumar, Sanjeev ; Chandrashekarmath, Anusha ; Karmakar, Tarak ; Balaram, Padmanabhan ; Balasubramanian, Sundaram ; Balaram, Hemalatha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-f4e219263260c63c29a3cae38ee3cc094667cef886bd648c630d6a55b635ed9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dongre, Aparna Vilas</creatorcontrib><creatorcontrib>Das, Sudip</creatorcontrib><creatorcontrib>Bellur, Asutosh</creatorcontrib><creatorcontrib>Kumar, Sanjeev</creatorcontrib><creatorcontrib>Chandrashekarmath, Anusha</creatorcontrib><creatorcontrib>Karmakar, Tarak</creatorcontrib><creatorcontrib>Balaram, Padmanabhan</creatorcontrib><creatorcontrib>Balasubramanian, Sundaram</creatorcontrib><creatorcontrib>Balaram, Hemalatha</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dongre, Aparna Vilas</au><au>Das, Sudip</au><au>Bellur, Asutosh</au><au>Kumar, Sanjeev</au><au>Chandrashekarmath, Anusha</au><au>Karmakar, Tarak</au><au>Balaram, Padmanabhan</au><au>Balasubramanian, Sundaram</au><au>Balaram, Hemalatha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation</atitle><jtitle>Biophysical journal</jtitle><date>2021-09-07</date><risdate>2021</risdate><volume>120</volume><issue>17</issue><spage>3732</spage><epage>3746</epage><pages>3732-3746</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or β-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability.</abstract><pub>Elsevier Inc</pub><pmid>34302792</pmid><doi>10.1016/j.bpj.2021.07.014</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8776-449X</orcidid><orcidid>https://orcid.org/0000-0002-6577-933X</orcidid><orcidid>https://orcid.org/0000-0003-1609-9490</orcidid><orcidid>https://orcid.org/0000-0002-8721-6247</orcidid><orcidid>https://orcid.org/0000-0002-3355-6764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2021-09, Vol.120 (17), p.3732-3746 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456296 |
source | Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
title | Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20the%20hyperthermostability%20of%20an%20archaeal%20enzyme%20induced%20by%20succinimide%20formation&rft.jtitle=Biophysical%20journal&rft.au=Dongre,%20Aparna%20Vilas&rft.date=2021-09-07&rft.volume=120&rft.issue=17&rft.spage=3732&rft.epage=3746&rft.pages=3732-3746&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2021.07.014&rft_dat=%3Cproquest_pubme%3E2555111827%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555111827&rft_id=info:pmid/34302792&rft_els_id=S0006349521006007&rfr_iscdi=true |