How do you feel? Using natural language processing to automatically rate emotion in psychotherapy

Emotional distress is a common reason for seeking psychotherapy, and sharing emotional material is central to the process of psychotherapy. However, systematic research examining patterns of emotional exchange that occur during psychotherapy sessions is often limited in scale. Traditional methods fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavior Research Methods 2021-10, Vol.53 (5), p.2069-2082
Hauptverfasser: Tanana, Michael J., Soma, Christina S., Kuo, Patty B., Bertagnolli, Nicolas M., Dembe, Aaron, Pace, Brian T., Srikumar, Vivek, Atkins, David C., Imel, Zac E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2082
container_issue 5
container_start_page 2069
container_title Behavior Research Methods
container_volume 53
creator Tanana, Michael J.
Soma, Christina S.
Kuo, Patty B.
Bertagnolli, Nicolas M.
Dembe, Aaron
Pace, Brian T.
Srikumar, Vivek
Atkins, David C.
Imel, Zac E.
description Emotional distress is a common reason for seeking psychotherapy, and sharing emotional material is central to the process of psychotherapy. However, systematic research examining patterns of emotional exchange that occur during psychotherapy sessions is often limited in scale. Traditional methods for identifying emotion in psychotherapy rely on labor-intensive observer ratings, client or therapist ratings obtained before or after sessions, or involve manually extracting ratings of emotion from session transcripts using dictionaries of positive and negative words that do not take the context of a sentence into account. However, recent advances in technology in the area of machine learning algorithms, in particular natural language processing, have made it possible for mental health researchers to identify sentiment, or emotion, in therapist–client interactions on a large scale that would be unattainable with more traditional methods. As an attempt to extend prior findings from Tanana et al. ( 2016 ), we compared their previous sentiment model with a common dictionary-based psychotherapy model, LIWC, and a new NLP model, BERT. We used the human ratings from a database of 97,497 utterances from psychotherapy to train the BERT model. Our findings revealed that the unigram sentiment model (kappa = 0.31) outperformed LIWC (kappa = 0.25), and ultimately BERT outperformed both models (kappa = 0.48).
doi_str_mv 10.3758/s13428-020-01531-z
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8455714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713917718</galeid><sourcerecordid>A713917718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-fea99509a603fd3b25040fbd0d7e0c2cd3b590268f394b07baa8446267b938173</originalsourceid><addsrcrecordid>eNp9Uctu1TAQjRAVLS0_wAJZYsMmxc842YCqCihSpW7ateU4k1xXiR1spyj9enybUgoL5MVYM-eceZyieEvwKZOi_hgJ47QuMcUlJoKR8v5FcUSE4CUTtH757H9YvI7xFmNWU8JfFYcs8zmj9KjQF_4n6jxa_YJ6gPEzuonWDcjptAQ9olG7YdEDoDl4A_GhljzSS_KTTtbocVxR0AkQTD5Z75B1aI6r2fm0g6Dn9aQ46PUY4c1jPC5uvn65Pr8oL6--fT8_uyyN4CSVPeimEbjRFWZ9x1oqMMd92-FOAjbU5JRoMK3qnjW8xbLVuua8opVsG1YTyY6LT5vuvLQTdAZcyguoOdhJh1V5bdXfFWd3avB3quZCSMKzwIdHgeB_LBCTmmw0MOYTgF-i2k_EeFNV-17v_4He-iW4vF5G5Rs3DLM96nRDDXoEZV3vc1-TXweTNd5Bb3P-TBLWEClJnQl0I5jgYwzQP01PsNpbrjbLVbZcPViu7jPp3fO9nyi_Pc4AtgFiLrkBwp9h_yP7C6eAuJ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582193037</pqid></control><display><type>article</type><title>How do you feel? Using natural language processing to automatically rate emotion in psychotherapy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tanana, Michael J. ; Soma, Christina S. ; Kuo, Patty B. ; Bertagnolli, Nicolas M. ; Dembe, Aaron ; Pace, Brian T. ; Srikumar, Vivek ; Atkins, David C. ; Imel, Zac E.</creator><creatorcontrib>Tanana, Michael J. ; Soma, Christina S. ; Kuo, Patty B. ; Bertagnolli, Nicolas M. ; Dembe, Aaron ; Pace, Brian T. ; Srikumar, Vivek ; Atkins, David C. ; Imel, Zac E.</creatorcontrib><description>Emotional distress is a common reason for seeking psychotherapy, and sharing emotional material is central to the process of psychotherapy. However, systematic research examining patterns of emotional exchange that occur during psychotherapy sessions is often limited in scale. Traditional methods for identifying emotion in psychotherapy rely on labor-intensive observer ratings, client or therapist ratings obtained before or after sessions, or involve manually extracting ratings of emotion from session transcripts using dictionaries of positive and negative words that do not take the context of a sentence into account. However, recent advances in technology in the area of machine learning algorithms, in particular natural language processing, have made it possible for mental health researchers to identify sentiment, or emotion, in therapist–client interactions on a large scale that would be unattainable with more traditional methods. As an attempt to extend prior findings from Tanana et al. ( 2016 ), we compared their previous sentiment model with a common dictionary-based psychotherapy model, LIWC, and a new NLP model, BERT. We used the human ratings from a database of 97,497 utterances from psychotherapy to train the BERT model. Our findings revealed that the unigram sentiment model (kappa = 0.31) outperformed LIWC (kappa = 0.25), and ultimately BERT outperformed both models (kappa = 0.48).</description><identifier>ISSN: 1554-3528</identifier><identifier>ISSN: 1554-351X</identifier><identifier>EISSN: 1554-3528</identifier><identifier>DOI: 10.3758/s13428-020-01531-z</identifier><identifier>PMID: 33754322</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Behavioral Science and Psychology ; Cognitive Psychology ; Computational linguistics ; Data mining ; Dictionaries ; Ellis, Albert ; Emotions ; Evaluation ; Language ; Language processing ; Learning algorithms ; Machine learning ; Natural language interfaces ; Natural language processing ; Psychology ; Psychotherapy</subject><ispartof>Behavior Research Methods, 2021-10, Vol.53 (5), p.2069-2082</ispartof><rights>The Psychonomic Society, Inc. 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Psychonomic Society, Inc. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-fea99509a603fd3b25040fbd0d7e0c2cd3b590268f394b07baa8446267b938173</citedby><cites>FETCH-LOGICAL-c541t-fea99509a603fd3b25040fbd0d7e0c2cd3b590268f394b07baa8446267b938173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3758/s13428-020-01531-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3758/s13428-020-01531-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33754322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanana, Michael J.</creatorcontrib><creatorcontrib>Soma, Christina S.</creatorcontrib><creatorcontrib>Kuo, Patty B.</creatorcontrib><creatorcontrib>Bertagnolli, Nicolas M.</creatorcontrib><creatorcontrib>Dembe, Aaron</creatorcontrib><creatorcontrib>Pace, Brian T.</creatorcontrib><creatorcontrib>Srikumar, Vivek</creatorcontrib><creatorcontrib>Atkins, David C.</creatorcontrib><creatorcontrib>Imel, Zac E.</creatorcontrib><title>How do you feel? Using natural language processing to automatically rate emotion in psychotherapy</title><title>Behavior Research Methods</title><addtitle>Behav Res</addtitle><addtitle>Behav Res Methods</addtitle><description>Emotional distress is a common reason for seeking psychotherapy, and sharing emotional material is central to the process of psychotherapy. However, systematic research examining patterns of emotional exchange that occur during psychotherapy sessions is often limited in scale. Traditional methods for identifying emotion in psychotherapy rely on labor-intensive observer ratings, client or therapist ratings obtained before or after sessions, or involve manually extracting ratings of emotion from session transcripts using dictionaries of positive and negative words that do not take the context of a sentence into account. However, recent advances in technology in the area of machine learning algorithms, in particular natural language processing, have made it possible for mental health researchers to identify sentiment, or emotion, in therapist–client interactions on a large scale that would be unattainable with more traditional methods. As an attempt to extend prior findings from Tanana et al. ( 2016 ), we compared their previous sentiment model with a common dictionary-based psychotherapy model, LIWC, and a new NLP model, BERT. We used the human ratings from a database of 97,497 utterances from psychotherapy to train the BERT model. Our findings revealed that the unigram sentiment model (kappa = 0.31) outperformed LIWC (kappa = 0.25), and ultimately BERT outperformed both models (kappa = 0.48).</description><subject>Behavioral Science and Psychology</subject><subject>Cognitive Psychology</subject><subject>Computational linguistics</subject><subject>Data mining</subject><subject>Dictionaries</subject><subject>Ellis, Albert</subject><subject>Emotions</subject><subject>Evaluation</subject><subject>Language</subject><subject>Language processing</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Natural language interfaces</subject><subject>Natural language processing</subject><subject>Psychology</subject><subject>Psychotherapy</subject><issn>1554-3528</issn><issn>1554-351X</issn><issn>1554-3528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9Uctu1TAQjRAVLS0_wAJZYsMmxc842YCqCihSpW7ateU4k1xXiR1spyj9enybUgoL5MVYM-eceZyieEvwKZOi_hgJ47QuMcUlJoKR8v5FcUSE4CUTtH757H9YvI7xFmNWU8JfFYcs8zmj9KjQF_4n6jxa_YJ6gPEzuonWDcjptAQ9olG7YdEDoDl4A_GhljzSS_KTTtbocVxR0AkQTD5Z75B1aI6r2fm0g6Dn9aQ46PUY4c1jPC5uvn65Pr8oL6--fT8_uyyN4CSVPeimEbjRFWZ9x1oqMMd92-FOAjbU5JRoMK3qnjW8xbLVuua8opVsG1YTyY6LT5vuvLQTdAZcyguoOdhJh1V5bdXfFWd3avB3quZCSMKzwIdHgeB_LBCTmmw0MOYTgF-i2k_EeFNV-17v_4He-iW4vF5G5Rs3DLM96nRDDXoEZV3vc1-TXweTNd5Bb3P-TBLWEClJnQl0I5jgYwzQP01PsNpbrjbLVbZcPViu7jPp3fO9nyi_Pc4AtgFiLrkBwp9h_yP7C6eAuJ8</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Tanana, Michael J.</creator><creator>Soma, Christina S.</creator><creator>Kuo, Patty B.</creator><creator>Bertagnolli, Nicolas M.</creator><creator>Dembe, Aaron</creator><creator>Pace, Brian T.</creator><creator>Srikumar, Vivek</creator><creator>Atkins, David C.</creator><creator>Imel, Zac E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>4T-</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20211001</creationdate><title>How do you feel? Using natural language processing to automatically rate emotion in psychotherapy</title><author>Tanana, Michael J. ; Soma, Christina S. ; Kuo, Patty B. ; Bertagnolli, Nicolas M. ; Dembe, Aaron ; Pace, Brian T. ; Srikumar, Vivek ; Atkins, David C. ; Imel, Zac E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-fea99509a603fd3b25040fbd0d7e0c2cd3b590268f394b07baa8446267b938173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Behavioral Science and Psychology</topic><topic>Cognitive Psychology</topic><topic>Computational linguistics</topic><topic>Data mining</topic><topic>Dictionaries</topic><topic>Ellis, Albert</topic><topic>Emotions</topic><topic>Evaluation</topic><topic>Language</topic><topic>Language processing</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Natural language interfaces</topic><topic>Natural language processing</topic><topic>Psychology</topic><topic>Psychotherapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanana, Michael J.</creatorcontrib><creatorcontrib>Soma, Christina S.</creatorcontrib><creatorcontrib>Kuo, Patty B.</creatorcontrib><creatorcontrib>Bertagnolli, Nicolas M.</creatorcontrib><creatorcontrib>Dembe, Aaron</creatorcontrib><creatorcontrib>Pace, Brian T.</creatorcontrib><creatorcontrib>Srikumar, Vivek</creatorcontrib><creatorcontrib>Atkins, David C.</creatorcontrib><creatorcontrib>Imel, Zac E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Behavior Research Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanana, Michael J.</au><au>Soma, Christina S.</au><au>Kuo, Patty B.</au><au>Bertagnolli, Nicolas M.</au><au>Dembe, Aaron</au><au>Pace, Brian T.</au><au>Srikumar, Vivek</au><au>Atkins, David C.</au><au>Imel, Zac E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How do you feel? Using natural language processing to automatically rate emotion in psychotherapy</atitle><jtitle>Behavior Research Methods</jtitle><stitle>Behav Res</stitle><addtitle>Behav Res Methods</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>53</volume><issue>5</issue><spage>2069</spage><epage>2082</epage><pages>2069-2082</pages><issn>1554-3528</issn><issn>1554-351X</issn><eissn>1554-3528</eissn><abstract>Emotional distress is a common reason for seeking psychotherapy, and sharing emotional material is central to the process of psychotherapy. However, systematic research examining patterns of emotional exchange that occur during psychotherapy sessions is often limited in scale. Traditional methods for identifying emotion in psychotherapy rely on labor-intensive observer ratings, client or therapist ratings obtained before or after sessions, or involve manually extracting ratings of emotion from session transcripts using dictionaries of positive and negative words that do not take the context of a sentence into account. However, recent advances in technology in the area of machine learning algorithms, in particular natural language processing, have made it possible for mental health researchers to identify sentiment, or emotion, in therapist–client interactions on a large scale that would be unattainable with more traditional methods. As an attempt to extend prior findings from Tanana et al. ( 2016 ), we compared their previous sentiment model with a common dictionary-based psychotherapy model, LIWC, and a new NLP model, BERT. We used the human ratings from a database of 97,497 utterances from psychotherapy to train the BERT model. Our findings revealed that the unigram sentiment model (kappa = 0.31) outperformed LIWC (kappa = 0.25), and ultimately BERT outperformed both models (kappa = 0.48).</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33754322</pmid><doi>10.3758/s13428-020-01531-z</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-3528
ispartof Behavior Research Methods, 2021-10, Vol.53 (5), p.2069-2082
issn 1554-3528
1554-351X
1554-3528
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8455714
source SpringerLink Journals - AutoHoldings
subjects Behavioral Science and Psychology
Cognitive Psychology
Computational linguistics
Data mining
Dictionaries
Ellis, Albert
Emotions
Evaluation
Language
Language processing
Learning algorithms
Machine learning
Natural language interfaces
Natural language processing
Psychology
Psychotherapy
title How do you feel? Using natural language processing to automatically rate emotion in psychotherapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20do%20you%20feel?%20Using%20natural%20language%20processing%20to%20automatically%20rate%20emotion%20in%20psychotherapy&rft.jtitle=Behavior%20Research%20Methods&rft.au=Tanana,%20Michael%20J.&rft.date=2021-10-01&rft.volume=53&rft.issue=5&rft.spage=2069&rft.epage=2082&rft.pages=2069-2082&rft.issn=1554-3528&rft.eissn=1554-3528&rft_id=info:doi/10.3758/s13428-020-01531-z&rft_dat=%3Cgale_pubme%3EA713917718%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582193037&rft_id=info:pmid/33754322&rft_galeid=A713917718&rfr_iscdi=true