How do you feel? Using natural language processing to automatically rate emotion in psychotherapy
Emotional distress is a common reason for seeking psychotherapy, and sharing emotional material is central to the process of psychotherapy. However, systematic research examining patterns of emotional exchange that occur during psychotherapy sessions is often limited in scale. Traditional methods fo...
Gespeichert in:
Veröffentlicht in: | Behavior Research Methods 2021-10, Vol.53 (5), p.2069-2082 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2082 |
---|---|
container_issue | 5 |
container_start_page | 2069 |
container_title | Behavior Research Methods |
container_volume | 53 |
creator | Tanana, Michael J. Soma, Christina S. Kuo, Patty B. Bertagnolli, Nicolas M. Dembe, Aaron Pace, Brian T. Srikumar, Vivek Atkins, David C. Imel, Zac E. |
description | Emotional distress is a common reason for seeking psychotherapy, and sharing emotional material is central to the process of psychotherapy. However, systematic research examining patterns of emotional exchange that occur during psychotherapy sessions is often limited in scale. Traditional methods for identifying emotion in psychotherapy rely on labor-intensive observer ratings, client or therapist ratings obtained before or after sessions, or involve manually extracting ratings of emotion from session transcripts using dictionaries of positive and negative words that do not take the context of a sentence into account. However, recent advances in technology in the area of machine learning algorithms, in particular natural language processing, have made it possible for mental health researchers to identify sentiment, or emotion, in therapist–client interactions on a large scale that would be unattainable with more traditional methods. As an attempt to extend prior findings from Tanana et al. (
2016
), we compared their previous sentiment model with a common dictionary-based psychotherapy model, LIWC, and a new NLP model, BERT. We used the human ratings from a database of 97,497 utterances from psychotherapy to train the BERT model. Our findings revealed that the unigram sentiment model (kappa = 0.31) outperformed LIWC (kappa = 0.25), and ultimately BERT outperformed both models (kappa = 0.48). |
doi_str_mv | 10.3758/s13428-020-01531-z |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8455714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713917718</galeid><sourcerecordid>A713917718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-fea99509a603fd3b25040fbd0d7e0c2cd3b590268f394b07baa8446267b938173</originalsourceid><addsrcrecordid>eNp9Uctu1TAQjRAVLS0_wAJZYsMmxc842YCqCihSpW7ateU4k1xXiR1spyj9enybUgoL5MVYM-eceZyieEvwKZOi_hgJ47QuMcUlJoKR8v5FcUSE4CUTtH757H9YvI7xFmNWU8JfFYcs8zmj9KjQF_4n6jxa_YJ6gPEzuonWDcjptAQ9olG7YdEDoDl4A_GhljzSS_KTTtbocVxR0AkQTD5Z75B1aI6r2fm0g6Dn9aQ46PUY4c1jPC5uvn65Pr8oL6--fT8_uyyN4CSVPeimEbjRFWZ9x1oqMMd92-FOAjbU5JRoMK3qnjW8xbLVuua8opVsG1YTyY6LT5vuvLQTdAZcyguoOdhJh1V5bdXfFWd3avB3quZCSMKzwIdHgeB_LBCTmmw0MOYTgF-i2k_EeFNV-17v_4He-iW4vF5G5Rs3DLM96nRDDXoEZV3vc1-TXweTNd5Bb3P-TBLWEClJnQl0I5jgYwzQP01PsNpbrjbLVbZcPViu7jPp3fO9nyi_Pc4AtgFiLrkBwp9h_yP7C6eAuJ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582193037</pqid></control><display><type>article</type><title>How do you feel? Using natural language processing to automatically rate emotion in psychotherapy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tanana, Michael J. ; Soma, Christina S. ; Kuo, Patty B. ; Bertagnolli, Nicolas M. ; Dembe, Aaron ; Pace, Brian T. ; Srikumar, Vivek ; Atkins, David C. ; Imel, Zac E.</creator><creatorcontrib>Tanana, Michael J. ; Soma, Christina S. ; Kuo, Patty B. ; Bertagnolli, Nicolas M. ; Dembe, Aaron ; Pace, Brian T. ; Srikumar, Vivek ; Atkins, David C. ; Imel, Zac E.</creatorcontrib><description>Emotional distress is a common reason for seeking psychotherapy, and sharing emotional material is central to the process of psychotherapy. However, systematic research examining patterns of emotional exchange that occur during psychotherapy sessions is often limited in scale. Traditional methods for identifying emotion in psychotherapy rely on labor-intensive observer ratings, client or therapist ratings obtained before or after sessions, or involve manually extracting ratings of emotion from session transcripts using dictionaries of positive and negative words that do not take the context of a sentence into account. However, recent advances in technology in the area of machine learning algorithms, in particular natural language processing, have made it possible for mental health researchers to identify sentiment, or emotion, in therapist–client interactions on a large scale that would be unattainable with more traditional methods. As an attempt to extend prior findings from Tanana et al. (
2016
), we compared their previous sentiment model with a common dictionary-based psychotherapy model, LIWC, and a new NLP model, BERT. We used the human ratings from a database of 97,497 utterances from psychotherapy to train the BERT model. Our findings revealed that the unigram sentiment model (kappa = 0.31) outperformed LIWC (kappa = 0.25), and ultimately BERT outperformed both models (kappa = 0.48).</description><identifier>ISSN: 1554-3528</identifier><identifier>ISSN: 1554-351X</identifier><identifier>EISSN: 1554-3528</identifier><identifier>DOI: 10.3758/s13428-020-01531-z</identifier><identifier>PMID: 33754322</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Behavioral Science and Psychology ; Cognitive Psychology ; Computational linguistics ; Data mining ; Dictionaries ; Ellis, Albert ; Emotions ; Evaluation ; Language ; Language processing ; Learning algorithms ; Machine learning ; Natural language interfaces ; Natural language processing ; Psychology ; Psychotherapy</subject><ispartof>Behavior Research Methods, 2021-10, Vol.53 (5), p.2069-2082</ispartof><rights>The Psychonomic Society, Inc. 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Psychonomic Society, Inc. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-fea99509a603fd3b25040fbd0d7e0c2cd3b590268f394b07baa8446267b938173</citedby><cites>FETCH-LOGICAL-c541t-fea99509a603fd3b25040fbd0d7e0c2cd3b590268f394b07baa8446267b938173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3758/s13428-020-01531-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3758/s13428-020-01531-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33754322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanana, Michael J.</creatorcontrib><creatorcontrib>Soma, Christina S.</creatorcontrib><creatorcontrib>Kuo, Patty B.</creatorcontrib><creatorcontrib>Bertagnolli, Nicolas M.</creatorcontrib><creatorcontrib>Dembe, Aaron</creatorcontrib><creatorcontrib>Pace, Brian T.</creatorcontrib><creatorcontrib>Srikumar, Vivek</creatorcontrib><creatorcontrib>Atkins, David C.</creatorcontrib><creatorcontrib>Imel, Zac E.</creatorcontrib><title>How do you feel? Using natural language processing to automatically rate emotion in psychotherapy</title><title>Behavior Research Methods</title><addtitle>Behav Res</addtitle><addtitle>Behav Res Methods</addtitle><description>Emotional distress is a common reason for seeking psychotherapy, and sharing emotional material is central to the process of psychotherapy. However, systematic research examining patterns of emotional exchange that occur during psychotherapy sessions is often limited in scale. Traditional methods for identifying emotion in psychotherapy rely on labor-intensive observer ratings, client or therapist ratings obtained before or after sessions, or involve manually extracting ratings of emotion from session transcripts using dictionaries of positive and negative words that do not take the context of a sentence into account. However, recent advances in technology in the area of machine learning algorithms, in particular natural language processing, have made it possible for mental health researchers to identify sentiment, or emotion, in therapist–client interactions on a large scale that would be unattainable with more traditional methods. As an attempt to extend prior findings from Tanana et al. (
2016
), we compared their previous sentiment model with a common dictionary-based psychotherapy model, LIWC, and a new NLP model, BERT. We used the human ratings from a database of 97,497 utterances from psychotherapy to train the BERT model. Our findings revealed that the unigram sentiment model (kappa = 0.31) outperformed LIWC (kappa = 0.25), and ultimately BERT outperformed both models (kappa = 0.48).</description><subject>Behavioral Science and Psychology</subject><subject>Cognitive Psychology</subject><subject>Computational linguistics</subject><subject>Data mining</subject><subject>Dictionaries</subject><subject>Ellis, Albert</subject><subject>Emotions</subject><subject>Evaluation</subject><subject>Language</subject><subject>Language processing</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Natural language interfaces</subject><subject>Natural language processing</subject><subject>Psychology</subject><subject>Psychotherapy</subject><issn>1554-3528</issn><issn>1554-351X</issn><issn>1554-3528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9Uctu1TAQjRAVLS0_wAJZYsMmxc842YCqCihSpW7ateU4k1xXiR1spyj9enybUgoL5MVYM-eceZyieEvwKZOi_hgJ47QuMcUlJoKR8v5FcUSE4CUTtH757H9YvI7xFmNWU8JfFYcs8zmj9KjQF_4n6jxa_YJ6gPEzuonWDcjptAQ9olG7YdEDoDl4A_GhljzSS_KTTtbocVxR0AkQTD5Z75B1aI6r2fm0g6Dn9aQ46PUY4c1jPC5uvn65Pr8oL6--fT8_uyyN4CSVPeimEbjRFWZ9x1oqMMd92-FOAjbU5JRoMK3qnjW8xbLVuua8opVsG1YTyY6LT5vuvLQTdAZcyguoOdhJh1V5bdXfFWd3avB3quZCSMKzwIdHgeB_LBCTmmw0MOYTgF-i2k_EeFNV-17v_4He-iW4vF5G5Rs3DLM96nRDDXoEZV3vc1-TXweTNd5Bb3P-TBLWEClJnQl0I5jgYwzQP01PsNpbrjbLVbZcPViu7jPp3fO9nyi_Pc4AtgFiLrkBwp9h_yP7C6eAuJ8</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Tanana, Michael J.</creator><creator>Soma, Christina S.</creator><creator>Kuo, Patty B.</creator><creator>Bertagnolli, Nicolas M.</creator><creator>Dembe, Aaron</creator><creator>Pace, Brian T.</creator><creator>Srikumar, Vivek</creator><creator>Atkins, David C.</creator><creator>Imel, Zac E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>4T-</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20211001</creationdate><title>How do you feel? Using natural language processing to automatically rate emotion in psychotherapy</title><author>Tanana, Michael J. ; Soma, Christina S. ; Kuo, Patty B. ; Bertagnolli, Nicolas M. ; Dembe, Aaron ; Pace, Brian T. ; Srikumar, Vivek ; Atkins, David C. ; Imel, Zac E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-fea99509a603fd3b25040fbd0d7e0c2cd3b590268f394b07baa8446267b938173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Behavioral Science and Psychology</topic><topic>Cognitive Psychology</topic><topic>Computational linguistics</topic><topic>Data mining</topic><topic>Dictionaries</topic><topic>Ellis, Albert</topic><topic>Emotions</topic><topic>Evaluation</topic><topic>Language</topic><topic>Language processing</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Natural language interfaces</topic><topic>Natural language processing</topic><topic>Psychology</topic><topic>Psychotherapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanana, Michael J.</creatorcontrib><creatorcontrib>Soma, Christina S.</creatorcontrib><creatorcontrib>Kuo, Patty B.</creatorcontrib><creatorcontrib>Bertagnolli, Nicolas M.</creatorcontrib><creatorcontrib>Dembe, Aaron</creatorcontrib><creatorcontrib>Pace, Brian T.</creatorcontrib><creatorcontrib>Srikumar, Vivek</creatorcontrib><creatorcontrib>Atkins, David C.</creatorcontrib><creatorcontrib>Imel, Zac E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Behavior Research Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanana, Michael J.</au><au>Soma, Christina S.</au><au>Kuo, Patty B.</au><au>Bertagnolli, Nicolas M.</au><au>Dembe, Aaron</au><au>Pace, Brian T.</au><au>Srikumar, Vivek</au><au>Atkins, David C.</au><au>Imel, Zac E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How do you feel? Using natural language processing to automatically rate emotion in psychotherapy</atitle><jtitle>Behavior Research Methods</jtitle><stitle>Behav Res</stitle><addtitle>Behav Res Methods</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>53</volume><issue>5</issue><spage>2069</spage><epage>2082</epage><pages>2069-2082</pages><issn>1554-3528</issn><issn>1554-351X</issn><eissn>1554-3528</eissn><abstract>Emotional distress is a common reason for seeking psychotherapy, and sharing emotional material is central to the process of psychotherapy. However, systematic research examining patterns of emotional exchange that occur during psychotherapy sessions is often limited in scale. Traditional methods for identifying emotion in psychotherapy rely on labor-intensive observer ratings, client or therapist ratings obtained before or after sessions, or involve manually extracting ratings of emotion from session transcripts using dictionaries of positive and negative words that do not take the context of a sentence into account. However, recent advances in technology in the area of machine learning algorithms, in particular natural language processing, have made it possible for mental health researchers to identify sentiment, or emotion, in therapist–client interactions on a large scale that would be unattainable with more traditional methods. As an attempt to extend prior findings from Tanana et al. (
2016
), we compared their previous sentiment model with a common dictionary-based psychotherapy model, LIWC, and a new NLP model, BERT. We used the human ratings from a database of 97,497 utterances from psychotherapy to train the BERT model. Our findings revealed that the unigram sentiment model (kappa = 0.31) outperformed LIWC (kappa = 0.25), and ultimately BERT outperformed both models (kappa = 0.48).</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33754322</pmid><doi>10.3758/s13428-020-01531-z</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-3528 |
ispartof | Behavior Research Methods, 2021-10, Vol.53 (5), p.2069-2082 |
issn | 1554-3528 1554-351X 1554-3528 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8455714 |
source | SpringerLink Journals - AutoHoldings |
subjects | Behavioral Science and Psychology Cognitive Psychology Computational linguistics Data mining Dictionaries Ellis, Albert Emotions Evaluation Language Language processing Learning algorithms Machine learning Natural language interfaces Natural language processing Psychology Psychotherapy |
title | How do you feel? Using natural language processing to automatically rate emotion in psychotherapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20do%20you%20feel?%20Using%20natural%20language%20processing%20to%20automatically%20rate%20emotion%20in%20psychotherapy&rft.jtitle=Behavior%20Research%20Methods&rft.au=Tanana,%20Michael%20J.&rft.date=2021-10-01&rft.volume=53&rft.issue=5&rft.spage=2069&rft.epage=2082&rft.pages=2069-2082&rft.issn=1554-3528&rft.eissn=1554-3528&rft_id=info:doi/10.3758/s13428-020-01531-z&rft_dat=%3Cgale_pubme%3EA713917718%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582193037&rft_id=info:pmid/33754322&rft_galeid=A713917718&rfr_iscdi=true |