From Uniaxial Testing of Isolated Layers to a Tri-Layered Arterial Wall: A Novel Constitutive Modelling Framework
Mechanical testing and constitutive modelling of isolated arterial layers yields insight into the individual layers’ mechanical properties, but per se fails to recapitulate the in vivo loading state, neglecting layer-specific residual stresses. The aim of this study was to develop a testing/modellin...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2021-09, Vol.49 (9), p.2454-2467 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2467 |
---|---|
container_issue | 9 |
container_start_page | 2454 |
container_title | Annals of biomedical engineering |
container_volume | 49 |
creator | Giudici, Alessandro Khir, Ashraf W. Szafron, Jason M. Spronck, Bart |
description | Mechanical testing and constitutive modelling of isolated arterial layers yields insight into the individual layers’ mechanical properties, but
per se
fails to recapitulate the
in vivo
loading state, neglecting layer-specific residual stresses. The aim of this study was to develop a testing/modelling framework that integrates layer-specific uniaxial testing data into a three-layered model of the arterial wall, thereby enabling study of layer-specific mechanics under realistic (patho)physiological conditions. Circumferentially and axially oriented strips of pig thoracic aortas (
n
= 10) were tested uniaxially. Individual arterial layers were then isolated from the wall, tested, and their mechanical behaviour modelled using a hyperelastic strain energy function. Subsequently, the three layers were computationally assembled into a single flat-walled sample, deformed into a cylindrical vessel, and subjected to physiological tension-inflation. At the
in vivo
axial stretch of 1.10 ± 0.03, average circumferential wall stress was 75 ± 9 kPa at 100 mmHg, which almost doubled to 138 ± 15 kPa at 160 mmHg. A ~ 200% stiffening of the adventitia over the 60 mmHg pressure increase shifted layer-specific load-bearing from the media (65 ± 10% → 61 ± 14%) to the adventitia (28 ± 9% → 32 ± 14%). Our approach provides valuable insight into the (patho)physiological mechanical roles of individual arterial layers at different loading states, and can be implemented conveniently using simple, inexpensive and widely available uniaxial testing equipment. |
doi_str_mv | 10.1007/s10439-021-02775-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8455406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536801377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c0a909b56a336fefef2935ab60825907a18d9ec98c6c25c11f86be8458c2d7d23</originalsourceid><addsrcrecordid>eNp9kUtvEzEUhS0EoiHwB1ggS2y6mXJtj18skKKI0EoBNqlYWo7HE6Z4xq09E-i_x2lKeSyQZVn2Pfezjw9CLwmcEQD5JhOoma6AkjKl5BV9hGaES1ZpocRjNAPQUAkt6hP0LOcrAEIU40_RCatBEcrJDN2sUuzx5dDZH50NeOPz2A07HFt8kWOwo2_w2t76lPEYscWb1FV3-3K-SKNPh6YvNoS3eIE_xb0PeBmHwhinsdt7_DE2PoQDcZVs77_H9O05etLakP2L-3WOLlfvN8vzav35w8Vysa5cLeuxcmA16C0XljHR-jKoZtxuBSjKNUhLVKO908oJR7kjpFVi61XNlaONbCibo3dH7vW07X3j_DAmG8x16nqbbk20nfm7MnRfzS7uTWHwGkQBnN4DUryZyseYvsuu2LGDj1M2lDOhgDApi_T1P9KrOKWh2CsqWWuqRIlqjuhR5VLMOfn24TEEzCFRc0zUlETNXaLmYOPVnzYeWn5FWATsKMilNOx8-n33f7A_AaVDrLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574928604</pqid></control><display><type>article</type><title>From Uniaxial Testing of Isolated Layers to a Tri-Layered Arterial Wall: A Novel Constitutive Modelling Framework</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Giudici, Alessandro ; Khir, Ashraf W. ; Szafron, Jason M. ; Spronck, Bart</creator><creatorcontrib>Giudici, Alessandro ; Khir, Ashraf W. ; Szafron, Jason M. ; Spronck, Bart</creatorcontrib><description>Mechanical testing and constitutive modelling of isolated arterial layers yields insight into the individual layers’ mechanical properties, but
per se
fails to recapitulate the
in vivo
loading state, neglecting layer-specific residual stresses. The aim of this study was to develop a testing/modelling framework that integrates layer-specific uniaxial testing data into a three-layered model of the arterial wall, thereby enabling study of layer-specific mechanics under realistic (patho)physiological conditions. Circumferentially and axially oriented strips of pig thoracic aortas (
n
= 10) were tested uniaxially. Individual arterial layers were then isolated from the wall, tested, and their mechanical behaviour modelled using a hyperelastic strain energy function. Subsequently, the three layers were computationally assembled into a single flat-walled sample, deformed into a cylindrical vessel, and subjected to physiological tension-inflation. At the
in vivo
axial stretch of 1.10 ± 0.03, average circumferential wall stress was 75 ± 9 kPa at 100 mmHg, which almost doubled to 138 ± 15 kPa at 160 mmHg. A ~ 200% stiffening of the adventitia over the 60 mmHg pressure increase shifted layer-specific load-bearing from the media (65 ± 10% → 61 ± 14%) to the adventitia (28 ± 9% → 32 ± 14%). Our approach provides valuable insight into the (patho)physiological mechanical roles of individual arterial layers at different loading states, and can be implemented conveniently using simple, inexpensive and widely available uniaxial testing equipment.</description><identifier>ISSN: 0090-6964</identifier><identifier>ISSN: 1573-9686</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-021-02775-2</identifier><identifier>PMID: 34081251</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adventitia - anatomy & histology ; Animals ; Aorta, Thoracic - anatomy & histology ; Axial stress ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Classical Mechanics ; In vivo methods and tests ; Mechanical properties ; Mechanical tests ; Modelling ; Models, Anatomic ; Original ; Original Article ; Physiology ; Residual stress ; Stiffening ; Strain ; Stress, Mechanical ; Swine ; Test equipment ; Thorax ; Uniaxial tests</subject><ispartof>Annals of biomedical engineering, 2021-09, Vol.49 (9), p.2454-2467</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c0a909b56a336fefef2935ab60825907a18d9ec98c6c25c11f86be8458c2d7d23</citedby><cites>FETCH-LOGICAL-c474t-c0a909b56a336fefef2935ab60825907a18d9ec98c6c25c11f86be8458c2d7d23</cites><orcidid>0000-0001-9476-5175 ; 0000-0002-0845-2891 ; 0000-0003-1076-1922 ; 0000-0002-8288-3980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-021-02775-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-021-02775-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34081251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giudici, Alessandro</creatorcontrib><creatorcontrib>Khir, Ashraf W.</creatorcontrib><creatorcontrib>Szafron, Jason M.</creatorcontrib><creatorcontrib>Spronck, Bart</creatorcontrib><title>From Uniaxial Testing of Isolated Layers to a Tri-Layered Arterial Wall: A Novel Constitutive Modelling Framework</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Mechanical testing and constitutive modelling of isolated arterial layers yields insight into the individual layers’ mechanical properties, but
per se
fails to recapitulate the
in vivo
loading state, neglecting layer-specific residual stresses. The aim of this study was to develop a testing/modelling framework that integrates layer-specific uniaxial testing data into a three-layered model of the arterial wall, thereby enabling study of layer-specific mechanics under realistic (patho)physiological conditions. Circumferentially and axially oriented strips of pig thoracic aortas (
n
= 10) were tested uniaxially. Individual arterial layers were then isolated from the wall, tested, and their mechanical behaviour modelled using a hyperelastic strain energy function. Subsequently, the three layers were computationally assembled into a single flat-walled sample, deformed into a cylindrical vessel, and subjected to physiological tension-inflation. At the
in vivo
axial stretch of 1.10 ± 0.03, average circumferential wall stress was 75 ± 9 kPa at 100 mmHg, which almost doubled to 138 ± 15 kPa at 160 mmHg. A ~ 200% stiffening of the adventitia over the 60 mmHg pressure increase shifted layer-specific load-bearing from the media (65 ± 10% → 61 ± 14%) to the adventitia (28 ± 9% → 32 ± 14%). Our approach provides valuable insight into the (patho)physiological mechanical roles of individual arterial layers at different loading states, and can be implemented conveniently using simple, inexpensive and widely available uniaxial testing equipment.</description><subject>Adventitia - anatomy & histology</subject><subject>Animals</subject><subject>Aorta, Thoracic - anatomy & histology</subject><subject>Axial stress</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Classical Mechanics</subject><subject>In vivo methods and tests</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Modelling</subject><subject>Models, Anatomic</subject><subject>Original</subject><subject>Original Article</subject><subject>Physiology</subject><subject>Residual stress</subject><subject>Stiffening</subject><subject>Strain</subject><subject>Stress, Mechanical</subject><subject>Swine</subject><subject>Test equipment</subject><subject>Thorax</subject><subject>Uniaxial tests</subject><issn>0090-6964</issn><issn>1573-9686</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtvEzEUhS0EoiHwB1ggS2y6mXJtj18skKKI0EoBNqlYWo7HE6Z4xq09E-i_x2lKeSyQZVn2Pfezjw9CLwmcEQD5JhOoma6AkjKl5BV9hGaES1ZpocRjNAPQUAkt6hP0LOcrAEIU40_RCatBEcrJDN2sUuzx5dDZH50NeOPz2A07HFt8kWOwo2_w2t76lPEYscWb1FV3-3K-SKNPh6YvNoS3eIE_xb0PeBmHwhinsdt7_DE2PoQDcZVs77_H9O05etLakP2L-3WOLlfvN8vzav35w8Vysa5cLeuxcmA16C0XljHR-jKoZtxuBSjKNUhLVKO908oJR7kjpFVi61XNlaONbCibo3dH7vW07X3j_DAmG8x16nqbbk20nfm7MnRfzS7uTWHwGkQBnN4DUryZyseYvsuu2LGDj1M2lDOhgDApi_T1P9KrOKWh2CsqWWuqRIlqjuhR5VLMOfn24TEEzCFRc0zUlETNXaLmYOPVnzYeWn5FWATsKMilNOx8-n33f7A_AaVDrLw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Giudici, Alessandro</creator><creator>Khir, Ashraf W.</creator><creator>Szafron, Jason M.</creator><creator>Spronck, Bart</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9476-5175</orcidid><orcidid>https://orcid.org/0000-0002-0845-2891</orcidid><orcidid>https://orcid.org/0000-0003-1076-1922</orcidid><orcidid>https://orcid.org/0000-0002-8288-3980</orcidid></search><sort><creationdate>20210901</creationdate><title>From Uniaxial Testing of Isolated Layers to a Tri-Layered Arterial Wall: A Novel Constitutive Modelling Framework</title><author>Giudici, Alessandro ; Khir, Ashraf W. ; Szafron, Jason M. ; Spronck, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c0a909b56a336fefef2935ab60825907a18d9ec98c6c25c11f86be8458c2d7d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adventitia - anatomy & histology</topic><topic>Animals</topic><topic>Aorta, Thoracic - anatomy & histology</topic><topic>Axial stress</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Classical Mechanics</topic><topic>In vivo methods and tests</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Modelling</topic><topic>Models, Anatomic</topic><topic>Original</topic><topic>Original Article</topic><topic>Physiology</topic><topic>Residual stress</topic><topic>Stiffening</topic><topic>Strain</topic><topic>Stress, Mechanical</topic><topic>Swine</topic><topic>Test equipment</topic><topic>Thorax</topic><topic>Uniaxial tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giudici, Alessandro</creatorcontrib><creatorcontrib>Khir, Ashraf W.</creatorcontrib><creatorcontrib>Szafron, Jason M.</creatorcontrib><creatorcontrib>Spronck, Bart</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giudici, Alessandro</au><au>Khir, Ashraf W.</au><au>Szafron, Jason M.</au><au>Spronck, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Uniaxial Testing of Isolated Layers to a Tri-Layered Arterial Wall: A Novel Constitutive Modelling Framework</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>49</volume><issue>9</issue><spage>2454</spage><epage>2467</epage><pages>2454-2467</pages><issn>0090-6964</issn><issn>1573-9686</issn><eissn>1573-9686</eissn><abstract>Mechanical testing and constitutive modelling of isolated arterial layers yields insight into the individual layers’ mechanical properties, but
per se
fails to recapitulate the
in vivo
loading state, neglecting layer-specific residual stresses. The aim of this study was to develop a testing/modelling framework that integrates layer-specific uniaxial testing data into a three-layered model of the arterial wall, thereby enabling study of layer-specific mechanics under realistic (patho)physiological conditions. Circumferentially and axially oriented strips of pig thoracic aortas (
n
= 10) were tested uniaxially. Individual arterial layers were then isolated from the wall, tested, and their mechanical behaviour modelled using a hyperelastic strain energy function. Subsequently, the three layers were computationally assembled into a single flat-walled sample, deformed into a cylindrical vessel, and subjected to physiological tension-inflation. At the
in vivo
axial stretch of 1.10 ± 0.03, average circumferential wall stress was 75 ± 9 kPa at 100 mmHg, which almost doubled to 138 ± 15 kPa at 160 mmHg. A ~ 200% stiffening of the adventitia over the 60 mmHg pressure increase shifted layer-specific load-bearing from the media (65 ± 10% → 61 ± 14%) to the adventitia (28 ± 9% → 32 ± 14%). Our approach provides valuable insight into the (patho)physiological mechanical roles of individual arterial layers at different loading states, and can be implemented conveniently using simple, inexpensive and widely available uniaxial testing equipment.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34081251</pmid><doi>10.1007/s10439-021-02775-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9476-5175</orcidid><orcidid>https://orcid.org/0000-0002-0845-2891</orcidid><orcidid>https://orcid.org/0000-0003-1076-1922</orcidid><orcidid>https://orcid.org/0000-0002-8288-3980</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2021-09, Vol.49 (9), p.2454-2467 |
issn | 0090-6964 1573-9686 1573-9686 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8455406 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adventitia - anatomy & histology Animals Aorta, Thoracic - anatomy & histology Axial stress Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Classical Mechanics In vivo methods and tests Mechanical properties Mechanical tests Modelling Models, Anatomic Original Original Article Physiology Residual stress Stiffening Strain Stress, Mechanical Swine Test equipment Thorax Uniaxial tests |
title | From Uniaxial Testing of Isolated Layers to a Tri-Layered Arterial Wall: A Novel Constitutive Modelling Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Uniaxial%20Testing%20of%20Isolated%20Layers%20to%20a%20Tri-Layered%20Arterial%20Wall:%20A%20Novel%20Constitutive%20Modelling%20Framework&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Giudici,%20Alessandro&rft.date=2021-09-01&rft.volume=49&rft.issue=9&rft.spage=2454&rft.epage=2467&rft.pages=2454-2467&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-021-02775-2&rft_dat=%3Cproquest_pubme%3E2536801377%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574928604&rft_id=info:pmid/34081251&rfr_iscdi=true |