Forensic soil provenancing in an urban/suburban setting: A sequential multivariate approach

Compositional data from a soil survey over North Canberra, Australian Capital Territory, are used to develop and test an empirical soil provenancing method. Mineralogical data from Fourier transform infrared spectroscopy (FTIR) and magnetic susceptibility (MS), and geochemical data from X‐ray fluore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forensic sciences 2021-09, Vol.66 (5), p.1679-1696
Hauptverfasser: Caritat, Patrice, Woods, Brenda, Simpson, Timothy, Nichols, Christopher, Hoogenboom, Lissy, Ilheo, Adriana, Aberle, Michael G., Hoogewerff, Jurian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1696
container_issue 5
container_start_page 1679
container_title Journal of forensic sciences
container_volume 66
creator Caritat, Patrice
Woods, Brenda
Simpson, Timothy
Nichols, Christopher
Hoogenboom, Lissy
Ilheo, Adriana
Aberle, Michael G.
Hoogewerff, Jurian
description Compositional data from a soil survey over North Canberra, Australian Capital Territory, are used to develop and test an empirical soil provenancing method. Mineralogical data from Fourier transform infrared spectroscopy (FTIR) and magnetic susceptibility (MS), and geochemical data from X‐ray fluorescence (XRF; for total major oxides) and inductively coupled plasma‐mass spectrometry (ICP‐MS; for both total and aqua regia‐soluble trace elements) are performed on the survey's 268 topsoil samples (0–5 cm depth; 1 sample per km2). Principal components (PCs) are calculated after imputation of censored data and centered log‐ratio transformation. The sequential provenancing approach is underpinned by (i) the preparation of interpolated raster grids of the soil properties (including PCs); (ii) the explicit quantification and propagation of uncertainty; (iii) the intersection of the soil property rasters with the values of the evidentiary sample (± uncertainty); and (iv) the computation of cumulative provenance rasters (“heat maps”) for the various analytical techniques. The sequential provenancing method is tested on the North Canberra soil survey with three “blind” samples representing simulated evidentiary samples. Performance metrics of precision and accuracy indicate that the FTIR and MS (mineralogy), as well as XRF and total ICP‐MS (geochemistry) analytical methods, offer the most precise and accurate provenance predictions. Inclusion of PCs in provenancing adds marginally to the performance. Maximizing the number of analytes/analytical techniques is advantageous in soil provenancing. Despite acknowledged limitations and gaps, it is concluded that the empirical soil provenancing approach can play an important role in forensic and intelligence applications.
doi_str_mv 10.1111/1556-4029.14727
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8453720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565969678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4347-e4da8ed504894dc47ebc27d31823af454479f1aed0c0c9d81943a96deb63173d3</originalsourceid><addsrcrecordid>eNqFkU1PAyEQhonR2Ppx9mZIPK-FBZbFg0nTWD9i4kVPHggLtKXZshV2a_rvpbY2enIuTJiXZ4Z3ALjA6BqnGGDGioyiXFxjynN-APr7m0PQRyjPM4xF2QMnMc4RQgUu8DHoESJYCtoH7-MmWB-dhrFxNVyGZmW98tr5KXQeKg-7UCk_iF31ncBo2zYVb-AwpR-d9a1TNVx0detWKjjVWqiWCaP07AwcTVQd7fnuPAVv47vX0UP2_HL_OBo-Z5oSyjNLjSqtYYiWghpNua10zg3BZU7UhDJKuZhgZQ3SSAtTYkGJEoWxVUEwJ4acgtstd9lVC2t0mimoWi6DW6iwlo1y8m_Fu5mcNitZUkZ4jhLgagcITfpSbOW86YJPM8ucFUwUouBlUg22Kh2aGIOd7DtgJDfbkBvv5cZ7-b2N9OLy92B7_Y_9ScC2gk9X2_V_PPk0ftmCvwClYpZK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565969678</pqid></control><display><type>article</type><title>Forensic soil provenancing in an urban/suburban setting: A sequential multivariate approach</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Caritat, Patrice ; Woods, Brenda ; Simpson, Timothy ; Nichols, Christopher ; Hoogenboom, Lissy ; Ilheo, Adriana ; Aberle, Michael G. ; Hoogewerff, Jurian</creator><creatorcontrib>Caritat, Patrice ; Woods, Brenda ; Simpson, Timothy ; Nichols, Christopher ; Hoogenboom, Lissy ; Ilheo, Adriana ; Aberle, Michael G. ; Hoogewerff, Jurian</creatorcontrib><description>Compositional data from a soil survey over North Canberra, Australian Capital Territory, are used to develop and test an empirical soil provenancing method. Mineralogical data from Fourier transform infrared spectroscopy (FTIR) and magnetic susceptibility (MS), and geochemical data from X‐ray fluorescence (XRF; for total major oxides) and inductively coupled plasma‐mass spectrometry (ICP‐MS; for both total and aqua regia‐soluble trace elements) are performed on the survey's 268 topsoil samples (0–5 cm depth; 1 sample per km2). Principal components (PCs) are calculated after imputation of censored data and centered log‐ratio transformation. The sequential provenancing approach is underpinned by (i) the preparation of interpolated raster grids of the soil properties (including PCs); (ii) the explicit quantification and propagation of uncertainty; (iii) the intersection of the soil property rasters with the values of the evidentiary sample (± uncertainty); and (iv) the computation of cumulative provenance rasters (“heat maps”) for the various analytical techniques. The sequential provenancing method is tested on the North Canberra soil survey with three “blind” samples representing simulated evidentiary samples. Performance metrics of precision and accuracy indicate that the FTIR and MS (mineralogy), as well as XRF and total ICP‐MS (geochemistry) analytical methods, offer the most precise and accurate provenance predictions. Inclusion of PCs in provenancing adds marginally to the performance. Maximizing the number of analytes/analytical techniques is advantageous in soil provenancing. Despite acknowledged limitations and gaps, it is concluded that the empirical soil provenancing approach can play an important role in forensic and intelligence applications.</description><identifier>ISSN: 0022-1198</identifier><identifier>EISSN: 1556-4029</identifier><identifier>DOI: 10.1111/1556-4029.14727</identifier><identifier>PMID: 33955554</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>compositional data analysis ; Empirical analysis ; Fluorescence ; Fourier transforms ; geochemical mapping ; Geochemistry ; geographic information system ; Inductively coupled plasma mass spectrometry ; Infrared spectroscopy ; interpolation ; Magnetic permeability ; Mass spectrometry ; Mathematical analysis ; Mineralogy ; Multivariate analysis ; Performance measurement ; soil forensics ; Soil properties ; Soil surveys ; Soil testing ; Topsoil ; Trace elements ; Uncertainty</subject><ispartof>Journal of forensic sciences, 2021-09, Vol.66 (5), p.1679-1696</ispartof><rights>2021 Commonwealth of Australia. Journal of Forensic Sciences published by Wiley Periodicals LLC on behalf of American Academy of Forensic Sciences</rights><rights>2021 Commonwealth of Australia. Journal of Forensic Sciences published by Wiley Periodicals LLC on behalf of American Academy of Forensic Sciences.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4347-e4da8ed504894dc47ebc27d31823af454479f1aed0c0c9d81943a96deb63173d3</citedby><cites>FETCH-LOGICAL-c4347-e4da8ed504894dc47ebc27d31823af454479f1aed0c0c9d81943a96deb63173d3</cites><orcidid>0000-0002-4185-9124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1556-4029.14727$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1556-4029.14727$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33955554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caritat, Patrice</creatorcontrib><creatorcontrib>Woods, Brenda</creatorcontrib><creatorcontrib>Simpson, Timothy</creatorcontrib><creatorcontrib>Nichols, Christopher</creatorcontrib><creatorcontrib>Hoogenboom, Lissy</creatorcontrib><creatorcontrib>Ilheo, Adriana</creatorcontrib><creatorcontrib>Aberle, Michael G.</creatorcontrib><creatorcontrib>Hoogewerff, Jurian</creatorcontrib><title>Forensic soil provenancing in an urban/suburban setting: A sequential multivariate approach</title><title>Journal of forensic sciences</title><addtitle>J Forensic Sci</addtitle><description>Compositional data from a soil survey over North Canberra, Australian Capital Territory, are used to develop and test an empirical soil provenancing method. Mineralogical data from Fourier transform infrared spectroscopy (FTIR) and magnetic susceptibility (MS), and geochemical data from X‐ray fluorescence (XRF; for total major oxides) and inductively coupled plasma‐mass spectrometry (ICP‐MS; for both total and aqua regia‐soluble trace elements) are performed on the survey's 268 topsoil samples (0–5 cm depth; 1 sample per km2). Principal components (PCs) are calculated after imputation of censored data and centered log‐ratio transformation. The sequential provenancing approach is underpinned by (i) the preparation of interpolated raster grids of the soil properties (including PCs); (ii) the explicit quantification and propagation of uncertainty; (iii) the intersection of the soil property rasters with the values of the evidentiary sample (± uncertainty); and (iv) the computation of cumulative provenance rasters (“heat maps”) for the various analytical techniques. The sequential provenancing method is tested on the North Canberra soil survey with three “blind” samples representing simulated evidentiary samples. Performance metrics of precision and accuracy indicate that the FTIR and MS (mineralogy), as well as XRF and total ICP‐MS (geochemistry) analytical methods, offer the most precise and accurate provenance predictions. Inclusion of PCs in provenancing adds marginally to the performance. Maximizing the number of analytes/analytical techniques is advantageous in soil provenancing. Despite acknowledged limitations and gaps, it is concluded that the empirical soil provenancing approach can play an important role in forensic and intelligence applications.</description><subject>compositional data analysis</subject><subject>Empirical analysis</subject><subject>Fluorescence</subject><subject>Fourier transforms</subject><subject>geochemical mapping</subject><subject>Geochemistry</subject><subject>geographic information system</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Infrared spectroscopy</subject><subject>interpolation</subject><subject>Magnetic permeability</subject><subject>Mass spectrometry</subject><subject>Mathematical analysis</subject><subject>Mineralogy</subject><subject>Multivariate analysis</subject><subject>Performance measurement</subject><subject>soil forensics</subject><subject>Soil properties</subject><subject>Soil surveys</subject><subject>Soil testing</subject><subject>Topsoil</subject><subject>Trace elements</subject><subject>Uncertainty</subject><issn>0022-1198</issn><issn>1556-4029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU1PAyEQhonR2Ppx9mZIPK-FBZbFg0nTWD9i4kVPHggLtKXZshV2a_rvpbY2enIuTJiXZ4Z3ALjA6BqnGGDGioyiXFxjynN-APr7m0PQRyjPM4xF2QMnMc4RQgUu8DHoESJYCtoH7-MmWB-dhrFxNVyGZmW98tr5KXQeKg-7UCk_iF31ncBo2zYVb-AwpR-d9a1TNVx0detWKjjVWqiWCaP07AwcTVQd7fnuPAVv47vX0UP2_HL_OBo-Z5oSyjNLjSqtYYiWghpNua10zg3BZU7UhDJKuZhgZQ3SSAtTYkGJEoWxVUEwJ4acgtstd9lVC2t0mimoWi6DW6iwlo1y8m_Fu5mcNitZUkZ4jhLgagcITfpSbOW86YJPM8ucFUwUouBlUg22Kh2aGIOd7DtgJDfbkBvv5cZ7-b2N9OLy92B7_Y_9ScC2gk9X2_V_PPk0ftmCvwClYpZK</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Caritat, Patrice</creator><creator>Woods, Brenda</creator><creator>Simpson, Timothy</creator><creator>Nichols, Christopher</creator><creator>Hoogenboom, Lissy</creator><creator>Ilheo, Adriana</creator><creator>Aberle, Michael G.</creator><creator>Hoogewerff, Jurian</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K7.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4185-9124</orcidid></search><sort><creationdate>202109</creationdate><title>Forensic soil provenancing in an urban/suburban setting: A sequential multivariate approach</title><author>Caritat, Patrice ; Woods, Brenda ; Simpson, Timothy ; Nichols, Christopher ; Hoogenboom, Lissy ; Ilheo, Adriana ; Aberle, Michael G. ; Hoogewerff, Jurian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4347-e4da8ed504894dc47ebc27d31823af454479f1aed0c0c9d81943a96deb63173d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>compositional data analysis</topic><topic>Empirical analysis</topic><topic>Fluorescence</topic><topic>Fourier transforms</topic><topic>geochemical mapping</topic><topic>Geochemistry</topic><topic>geographic information system</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Infrared spectroscopy</topic><topic>interpolation</topic><topic>Magnetic permeability</topic><topic>Mass spectrometry</topic><topic>Mathematical analysis</topic><topic>Mineralogy</topic><topic>Multivariate analysis</topic><topic>Performance measurement</topic><topic>soil forensics</topic><topic>Soil properties</topic><topic>Soil surveys</topic><topic>Soil testing</topic><topic>Topsoil</topic><topic>Trace elements</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caritat, Patrice</creatorcontrib><creatorcontrib>Woods, Brenda</creatorcontrib><creatorcontrib>Simpson, Timothy</creatorcontrib><creatorcontrib>Nichols, Christopher</creatorcontrib><creatorcontrib>Hoogenboom, Lissy</creatorcontrib><creatorcontrib>Ilheo, Adriana</creatorcontrib><creatorcontrib>Aberle, Michael G.</creatorcontrib><creatorcontrib>Hoogewerff, Jurian</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of forensic sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caritat, Patrice</au><au>Woods, Brenda</au><au>Simpson, Timothy</au><au>Nichols, Christopher</au><au>Hoogenboom, Lissy</au><au>Ilheo, Adriana</au><au>Aberle, Michael G.</au><au>Hoogewerff, Jurian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forensic soil provenancing in an urban/suburban setting: A sequential multivariate approach</atitle><jtitle>Journal of forensic sciences</jtitle><addtitle>J Forensic Sci</addtitle><date>2021-09</date><risdate>2021</risdate><volume>66</volume><issue>5</issue><spage>1679</spage><epage>1696</epage><pages>1679-1696</pages><issn>0022-1198</issn><eissn>1556-4029</eissn><abstract>Compositional data from a soil survey over North Canberra, Australian Capital Territory, are used to develop and test an empirical soil provenancing method. Mineralogical data from Fourier transform infrared spectroscopy (FTIR) and magnetic susceptibility (MS), and geochemical data from X‐ray fluorescence (XRF; for total major oxides) and inductively coupled plasma‐mass spectrometry (ICP‐MS; for both total and aqua regia‐soluble trace elements) are performed on the survey's 268 topsoil samples (0–5 cm depth; 1 sample per km2). Principal components (PCs) are calculated after imputation of censored data and centered log‐ratio transformation. The sequential provenancing approach is underpinned by (i) the preparation of interpolated raster grids of the soil properties (including PCs); (ii) the explicit quantification and propagation of uncertainty; (iii) the intersection of the soil property rasters with the values of the evidentiary sample (± uncertainty); and (iv) the computation of cumulative provenance rasters (“heat maps”) for the various analytical techniques. The sequential provenancing method is tested on the North Canberra soil survey with three “blind” samples representing simulated evidentiary samples. Performance metrics of precision and accuracy indicate that the FTIR and MS (mineralogy), as well as XRF and total ICP‐MS (geochemistry) analytical methods, offer the most precise and accurate provenance predictions. Inclusion of PCs in provenancing adds marginally to the performance. Maximizing the number of analytes/analytical techniques is advantageous in soil provenancing. Despite acknowledged limitations and gaps, it is concluded that the empirical soil provenancing approach can play an important role in forensic and intelligence applications.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33955554</pmid><doi>10.1111/1556-4029.14727</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4185-9124</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1198
ispartof Journal of forensic sciences, 2021-09, Vol.66 (5), p.1679-1696
issn 0022-1198
1556-4029
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8453720
source Wiley Online Library Journals Frontfile Complete
subjects compositional data analysis
Empirical analysis
Fluorescence
Fourier transforms
geochemical mapping
Geochemistry
geographic information system
Inductively coupled plasma mass spectrometry
Infrared spectroscopy
interpolation
Magnetic permeability
Mass spectrometry
Mathematical analysis
Mineralogy
Multivariate analysis
Performance measurement
soil forensics
Soil properties
Soil surveys
Soil testing
Topsoil
Trace elements
Uncertainty
title Forensic soil provenancing in an urban/suburban setting: A sequential multivariate approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A28%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forensic%20soil%20provenancing%20in%20an%20urban/suburban%20setting:%20A%20sequential%20multivariate%20approach&rft.jtitle=Journal%20of%20forensic%20sciences&rft.au=Caritat,%20Patrice&rft.date=2021-09&rft.volume=66&rft.issue=5&rft.spage=1679&rft.epage=1696&rft.pages=1679-1696&rft.issn=0022-1198&rft.eissn=1556-4029&rft_id=info:doi/10.1111/1556-4029.14727&rft_dat=%3Cproquest_pubme%3E2565969678%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565969678&rft_id=info:pmid/33955554&rfr_iscdi=true