Forensic soil provenancing in an urban/suburban setting: A sequential multivariate approach
Compositional data from a soil survey over North Canberra, Australian Capital Territory, are used to develop and test an empirical soil provenancing method. Mineralogical data from Fourier transform infrared spectroscopy (FTIR) and magnetic susceptibility (MS), and geochemical data from X‐ray fluore...
Gespeichert in:
Veröffentlicht in: | Journal of forensic sciences 2021-09, Vol.66 (5), p.1679-1696 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1696 |
---|---|
container_issue | 5 |
container_start_page | 1679 |
container_title | Journal of forensic sciences |
container_volume | 66 |
creator | Caritat, Patrice Woods, Brenda Simpson, Timothy Nichols, Christopher Hoogenboom, Lissy Ilheo, Adriana Aberle, Michael G. Hoogewerff, Jurian |
description | Compositional data from a soil survey over North Canberra, Australian Capital Territory, are used to develop and test an empirical soil provenancing method. Mineralogical data from Fourier transform infrared spectroscopy (FTIR) and magnetic susceptibility (MS), and geochemical data from X‐ray fluorescence (XRF; for total major oxides) and inductively coupled plasma‐mass spectrometry (ICP‐MS; for both total and aqua regia‐soluble trace elements) are performed on the survey's 268 topsoil samples (0–5 cm depth; 1 sample per km2). Principal components (PCs) are calculated after imputation of censored data and centered log‐ratio transformation. The sequential provenancing approach is underpinned by (i) the preparation of interpolated raster grids of the soil properties (including PCs); (ii) the explicit quantification and propagation of uncertainty; (iii) the intersection of the soil property rasters with the values of the evidentiary sample (± uncertainty); and (iv) the computation of cumulative provenance rasters (“heat maps”) for the various analytical techniques. The sequential provenancing method is tested on the North Canberra soil survey with three “blind” samples representing simulated evidentiary samples. Performance metrics of precision and accuracy indicate that the FTIR and MS (mineralogy), as well as XRF and total ICP‐MS (geochemistry) analytical methods, offer the most precise and accurate provenance predictions. Inclusion of PCs in provenancing adds marginally to the performance. Maximizing the number of analytes/analytical techniques is advantageous in soil provenancing. Despite acknowledged limitations and gaps, it is concluded that the empirical soil provenancing approach can play an important role in forensic and intelligence applications. |
doi_str_mv | 10.1111/1556-4029.14727 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8453720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565969678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4347-e4da8ed504894dc47ebc27d31823af454479f1aed0c0c9d81943a96deb63173d3</originalsourceid><addsrcrecordid>eNqFkU1PAyEQhonR2Ppx9mZIPK-FBZbFg0nTWD9i4kVPHggLtKXZshV2a_rvpbY2enIuTJiXZ4Z3ALjA6BqnGGDGioyiXFxjynN-APr7m0PQRyjPM4xF2QMnMc4RQgUu8DHoESJYCtoH7-MmWB-dhrFxNVyGZmW98tr5KXQeKg-7UCk_iF31ncBo2zYVb-AwpR-d9a1TNVx0detWKjjVWqiWCaP07AwcTVQd7fnuPAVv47vX0UP2_HL_OBo-Z5oSyjNLjSqtYYiWghpNua10zg3BZU7UhDJKuZhgZQ3SSAtTYkGJEoWxVUEwJ4acgtstd9lVC2t0mimoWi6DW6iwlo1y8m_Fu5mcNitZUkZ4jhLgagcITfpSbOW86YJPM8ucFUwUouBlUg22Kh2aGIOd7DtgJDfbkBvv5cZ7-b2N9OLy92B7_Y_9ScC2gk9X2_V_PPk0ftmCvwClYpZK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565969678</pqid></control><display><type>article</type><title>Forensic soil provenancing in an urban/suburban setting: A sequential multivariate approach</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Caritat, Patrice ; Woods, Brenda ; Simpson, Timothy ; Nichols, Christopher ; Hoogenboom, Lissy ; Ilheo, Adriana ; Aberle, Michael G. ; Hoogewerff, Jurian</creator><creatorcontrib>Caritat, Patrice ; Woods, Brenda ; Simpson, Timothy ; Nichols, Christopher ; Hoogenboom, Lissy ; Ilheo, Adriana ; Aberle, Michael G. ; Hoogewerff, Jurian</creatorcontrib><description>Compositional data from a soil survey over North Canberra, Australian Capital Territory, are used to develop and test an empirical soil provenancing method. Mineralogical data from Fourier transform infrared spectroscopy (FTIR) and magnetic susceptibility (MS), and geochemical data from X‐ray fluorescence (XRF; for total major oxides) and inductively coupled plasma‐mass spectrometry (ICP‐MS; for both total and aqua regia‐soluble trace elements) are performed on the survey's 268 topsoil samples (0–5 cm depth; 1 sample per km2). Principal components (PCs) are calculated after imputation of censored data and centered log‐ratio transformation. The sequential provenancing approach is underpinned by (i) the preparation of interpolated raster grids of the soil properties (including PCs); (ii) the explicit quantification and propagation of uncertainty; (iii) the intersection of the soil property rasters with the values of the evidentiary sample (± uncertainty); and (iv) the computation of cumulative provenance rasters (“heat maps”) for the various analytical techniques. The sequential provenancing method is tested on the North Canberra soil survey with three “blind” samples representing simulated evidentiary samples. Performance metrics of precision and accuracy indicate that the FTIR and MS (mineralogy), as well as XRF and total ICP‐MS (geochemistry) analytical methods, offer the most precise and accurate provenance predictions. Inclusion of PCs in provenancing adds marginally to the performance. Maximizing the number of analytes/analytical techniques is advantageous in soil provenancing. Despite acknowledged limitations and gaps, it is concluded that the empirical soil provenancing approach can play an important role in forensic and intelligence applications.</description><identifier>ISSN: 0022-1198</identifier><identifier>EISSN: 1556-4029</identifier><identifier>DOI: 10.1111/1556-4029.14727</identifier><identifier>PMID: 33955554</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>compositional data analysis ; Empirical analysis ; Fluorescence ; Fourier transforms ; geochemical mapping ; Geochemistry ; geographic information system ; Inductively coupled plasma mass spectrometry ; Infrared spectroscopy ; interpolation ; Magnetic permeability ; Mass spectrometry ; Mathematical analysis ; Mineralogy ; Multivariate analysis ; Performance measurement ; soil forensics ; Soil properties ; Soil surveys ; Soil testing ; Topsoil ; Trace elements ; Uncertainty</subject><ispartof>Journal of forensic sciences, 2021-09, Vol.66 (5), p.1679-1696</ispartof><rights>2021 Commonwealth of Australia. Journal of Forensic Sciences published by Wiley Periodicals LLC on behalf of American Academy of Forensic Sciences</rights><rights>2021 Commonwealth of Australia. Journal of Forensic Sciences published by Wiley Periodicals LLC on behalf of American Academy of Forensic Sciences.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4347-e4da8ed504894dc47ebc27d31823af454479f1aed0c0c9d81943a96deb63173d3</citedby><cites>FETCH-LOGICAL-c4347-e4da8ed504894dc47ebc27d31823af454479f1aed0c0c9d81943a96deb63173d3</cites><orcidid>0000-0002-4185-9124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1556-4029.14727$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1556-4029.14727$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33955554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caritat, Patrice</creatorcontrib><creatorcontrib>Woods, Brenda</creatorcontrib><creatorcontrib>Simpson, Timothy</creatorcontrib><creatorcontrib>Nichols, Christopher</creatorcontrib><creatorcontrib>Hoogenboom, Lissy</creatorcontrib><creatorcontrib>Ilheo, Adriana</creatorcontrib><creatorcontrib>Aberle, Michael G.</creatorcontrib><creatorcontrib>Hoogewerff, Jurian</creatorcontrib><title>Forensic soil provenancing in an urban/suburban setting: A sequential multivariate approach</title><title>Journal of forensic sciences</title><addtitle>J Forensic Sci</addtitle><description>Compositional data from a soil survey over North Canberra, Australian Capital Territory, are used to develop and test an empirical soil provenancing method. Mineralogical data from Fourier transform infrared spectroscopy (FTIR) and magnetic susceptibility (MS), and geochemical data from X‐ray fluorescence (XRF; for total major oxides) and inductively coupled plasma‐mass spectrometry (ICP‐MS; for both total and aqua regia‐soluble trace elements) are performed on the survey's 268 topsoil samples (0–5 cm depth; 1 sample per km2). Principal components (PCs) are calculated after imputation of censored data and centered log‐ratio transformation. The sequential provenancing approach is underpinned by (i) the preparation of interpolated raster grids of the soil properties (including PCs); (ii) the explicit quantification and propagation of uncertainty; (iii) the intersection of the soil property rasters with the values of the evidentiary sample (± uncertainty); and (iv) the computation of cumulative provenance rasters (“heat maps”) for the various analytical techniques. The sequential provenancing method is tested on the North Canberra soil survey with three “blind” samples representing simulated evidentiary samples. Performance metrics of precision and accuracy indicate that the FTIR and MS (mineralogy), as well as XRF and total ICP‐MS (geochemistry) analytical methods, offer the most precise and accurate provenance predictions. Inclusion of PCs in provenancing adds marginally to the performance. Maximizing the number of analytes/analytical techniques is advantageous in soil provenancing. Despite acknowledged limitations and gaps, it is concluded that the empirical soil provenancing approach can play an important role in forensic and intelligence applications.</description><subject>compositional data analysis</subject><subject>Empirical analysis</subject><subject>Fluorescence</subject><subject>Fourier transforms</subject><subject>geochemical mapping</subject><subject>Geochemistry</subject><subject>geographic information system</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Infrared spectroscopy</subject><subject>interpolation</subject><subject>Magnetic permeability</subject><subject>Mass spectrometry</subject><subject>Mathematical analysis</subject><subject>Mineralogy</subject><subject>Multivariate analysis</subject><subject>Performance measurement</subject><subject>soil forensics</subject><subject>Soil properties</subject><subject>Soil surveys</subject><subject>Soil testing</subject><subject>Topsoil</subject><subject>Trace elements</subject><subject>Uncertainty</subject><issn>0022-1198</issn><issn>1556-4029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU1PAyEQhonR2Ppx9mZIPK-FBZbFg0nTWD9i4kVPHggLtKXZshV2a_rvpbY2enIuTJiXZ4Z3ALjA6BqnGGDGioyiXFxjynN-APr7m0PQRyjPM4xF2QMnMc4RQgUu8DHoESJYCtoH7-MmWB-dhrFxNVyGZmW98tr5KXQeKg-7UCk_iF31ncBo2zYVb-AwpR-d9a1TNVx0detWKjjVWqiWCaP07AwcTVQd7fnuPAVv47vX0UP2_HL_OBo-Z5oSyjNLjSqtYYiWghpNua10zg3BZU7UhDJKuZhgZQ3SSAtTYkGJEoWxVUEwJ4acgtstd9lVC2t0mimoWi6DW6iwlo1y8m_Fu5mcNitZUkZ4jhLgagcITfpSbOW86YJPM8ucFUwUouBlUg22Kh2aGIOd7DtgJDfbkBvv5cZ7-b2N9OLy92B7_Y_9ScC2gk9X2_V_PPk0ftmCvwClYpZK</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Caritat, Patrice</creator><creator>Woods, Brenda</creator><creator>Simpson, Timothy</creator><creator>Nichols, Christopher</creator><creator>Hoogenboom, Lissy</creator><creator>Ilheo, Adriana</creator><creator>Aberle, Michael G.</creator><creator>Hoogewerff, Jurian</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K7.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4185-9124</orcidid></search><sort><creationdate>202109</creationdate><title>Forensic soil provenancing in an urban/suburban setting: A sequential multivariate approach</title><author>Caritat, Patrice ; Woods, Brenda ; Simpson, Timothy ; Nichols, Christopher ; Hoogenboom, Lissy ; Ilheo, Adriana ; Aberle, Michael G. ; Hoogewerff, Jurian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4347-e4da8ed504894dc47ebc27d31823af454479f1aed0c0c9d81943a96deb63173d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>compositional data analysis</topic><topic>Empirical analysis</topic><topic>Fluorescence</topic><topic>Fourier transforms</topic><topic>geochemical mapping</topic><topic>Geochemistry</topic><topic>geographic information system</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Infrared spectroscopy</topic><topic>interpolation</topic><topic>Magnetic permeability</topic><topic>Mass spectrometry</topic><topic>Mathematical analysis</topic><topic>Mineralogy</topic><topic>Multivariate analysis</topic><topic>Performance measurement</topic><topic>soil forensics</topic><topic>Soil properties</topic><topic>Soil surveys</topic><topic>Soil testing</topic><topic>Topsoil</topic><topic>Trace elements</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caritat, Patrice</creatorcontrib><creatorcontrib>Woods, Brenda</creatorcontrib><creatorcontrib>Simpson, Timothy</creatorcontrib><creatorcontrib>Nichols, Christopher</creatorcontrib><creatorcontrib>Hoogenboom, Lissy</creatorcontrib><creatorcontrib>Ilheo, Adriana</creatorcontrib><creatorcontrib>Aberle, Michael G.</creatorcontrib><creatorcontrib>Hoogewerff, Jurian</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of forensic sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caritat, Patrice</au><au>Woods, Brenda</au><au>Simpson, Timothy</au><au>Nichols, Christopher</au><au>Hoogenboom, Lissy</au><au>Ilheo, Adriana</au><au>Aberle, Michael G.</au><au>Hoogewerff, Jurian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forensic soil provenancing in an urban/suburban setting: A sequential multivariate approach</atitle><jtitle>Journal of forensic sciences</jtitle><addtitle>J Forensic Sci</addtitle><date>2021-09</date><risdate>2021</risdate><volume>66</volume><issue>5</issue><spage>1679</spage><epage>1696</epage><pages>1679-1696</pages><issn>0022-1198</issn><eissn>1556-4029</eissn><abstract>Compositional data from a soil survey over North Canberra, Australian Capital Territory, are used to develop and test an empirical soil provenancing method. Mineralogical data from Fourier transform infrared spectroscopy (FTIR) and magnetic susceptibility (MS), and geochemical data from X‐ray fluorescence (XRF; for total major oxides) and inductively coupled plasma‐mass spectrometry (ICP‐MS; for both total and aqua regia‐soluble trace elements) are performed on the survey's 268 topsoil samples (0–5 cm depth; 1 sample per km2). Principal components (PCs) are calculated after imputation of censored data and centered log‐ratio transformation. The sequential provenancing approach is underpinned by (i) the preparation of interpolated raster grids of the soil properties (including PCs); (ii) the explicit quantification and propagation of uncertainty; (iii) the intersection of the soil property rasters with the values of the evidentiary sample (± uncertainty); and (iv) the computation of cumulative provenance rasters (“heat maps”) for the various analytical techniques. The sequential provenancing method is tested on the North Canberra soil survey with three “blind” samples representing simulated evidentiary samples. Performance metrics of precision and accuracy indicate that the FTIR and MS (mineralogy), as well as XRF and total ICP‐MS (geochemistry) analytical methods, offer the most precise and accurate provenance predictions. Inclusion of PCs in provenancing adds marginally to the performance. Maximizing the number of analytes/analytical techniques is advantageous in soil provenancing. Despite acknowledged limitations and gaps, it is concluded that the empirical soil provenancing approach can play an important role in forensic and intelligence applications.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33955554</pmid><doi>10.1111/1556-4029.14727</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4185-9124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1198 |
ispartof | Journal of forensic sciences, 2021-09, Vol.66 (5), p.1679-1696 |
issn | 0022-1198 1556-4029 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8453720 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | compositional data analysis Empirical analysis Fluorescence Fourier transforms geochemical mapping Geochemistry geographic information system Inductively coupled plasma mass spectrometry Infrared spectroscopy interpolation Magnetic permeability Mass spectrometry Mathematical analysis Mineralogy Multivariate analysis Performance measurement soil forensics Soil properties Soil surveys Soil testing Topsoil Trace elements Uncertainty |
title | Forensic soil provenancing in an urban/suburban setting: A sequential multivariate approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A28%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forensic%20soil%20provenancing%20in%20an%20urban/suburban%20setting:%20A%20sequential%20multivariate%20approach&rft.jtitle=Journal%20of%20forensic%20sciences&rft.au=Caritat,%20Patrice&rft.date=2021-09&rft.volume=66&rft.issue=5&rft.spage=1679&rft.epage=1696&rft.pages=1679-1696&rft.issn=0022-1198&rft.eissn=1556-4029&rft_id=info:doi/10.1111/1556-4029.14727&rft_dat=%3Cproquest_pubme%3E2565969678%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565969678&rft_id=info:pmid/33955554&rfr_iscdi=true |