Handling Missing Data in the Short Form–12 Health Survey (SF-12): Concordance of Real Patient Data and Data Estimated by Missing Data Imputation Procedures
If information on single items in the Short Form–12 health survey (SF-12) is missing, the analysis of only complete cases causes a loss of statistical power and, in case of nonrandom missing data (MD), systematic bias. This study aimed at evaluating the concordance of real patient data and data esti...
Gespeichert in:
Veröffentlicht in: | Assessment (Odessa, Fla.) Fla.), 2021-10, Vol.28 (7), p.1785-1798 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1798 |
---|---|
container_issue | 7 |
container_start_page | 1785 |
container_title | Assessment (Odessa, Fla.) |
container_volume | 28 |
creator | Wirtz, Markus A. Röttele, Nicole Morfeld, Matthias Brähler, Elmar Glaesmer, Heide |
description | If information on single items in the Short Form–12 health survey (SF-12) is missing, the analysis of only complete cases causes a loss of statistical power and, in case of nonrandom missing data (MD), systematic bias. This study aimed at evaluating the concordance of real patient data and data estimated by different MD imputation procedures in the items of the SF-12 assessment. For this ends, MD were examined in a sample of 1,137 orthopedic patients. Additionally, MD were simulated (a) in the subsample of orthopedic patients exhibiting no MD (n = 810; 71%) as well as (b) in a sample of 6,970 respondents representing the German general population (95.8% participants with complete data) using logistic regression modelling. Simulated MD were replaced by mean values as well as regression-, expectation-maximization- (EM-), and multiple imputation estimates. Higher age and lower education were associated with enhanced probabilities of MD. In terms of accuracy in both data sets, the EM-procedure (ICC2,1 = .33-.72) outperformed alternative estimation approaches substantially (e.g., regression imputation: ICC2,1 = .18-.48). The EM-algorithm can be recommended to estimate MD in the items of the SF-12, because it reproduces the actual patient data most accurately. |
doi_str_mv | 10.1177/1073191120952886 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8450993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1073191120952886</sage_id><sourcerecordid>2438995543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-f551848aee4124eb9bcb2a9d6c82a8e9d8484ca240a0bdc02f4292743f04cfe93</originalsourceid><addsrcrecordid>eNp1UctuEzEUtVARfcCeFfKyLAZsj53YXVRCoSGViqgIrC2P504y1YwdbE-l7PoPXffn-iV1NKWilVjdK53HPboHofeUfKJ0Ov1MybSkilJGlGBSTl6hAyoEK0ou1V7eM1zs8H10GOMVIVRMlHyD9ksmJ1zJ8gDdLYyru9at8Pc2xt38apLBrcNpDXi59iHhuQ_9_c0tZXgBpktrvBzCNWzx8XJeUPbxBM-8sz7UxlnAvsE_MwtfmtSCS6NdvjEuZzG1vUlQ42r7_OJ5vxlS1niHL4O3UA8B4lv0ujFdhHeP8wj9np_9mi2Kix_fzmdfLgorCElFIwSVXBoAThmHSlW2YkbVEyuZkaDqDHJrGCeGVLUlrOFMsSkvG8JtA6o8Qqej72aoeqhtDh5Mpzchhw1b7U2rnyOuXeuVv9aSC6JUmQ2OHw2C_zNATLpvo4WuMw78EDXjpVRKCL6jkpFqg48xQPN0hhK9a1W_bDVLPvwb70nwt8ZMKEZCNCvQV34ILr_r_4YP7fqryw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438995543</pqid></control><display><type>article</type><title>Handling Missing Data in the Short Form–12 Health Survey (SF-12): Concordance of Real Patient Data and Data Estimated by Missing Data Imputation Procedures</title><source>MEDLINE</source><source>SAGE Complete A-Z List</source><creator>Wirtz, Markus A. ; Röttele, Nicole ; Morfeld, Matthias ; Brähler, Elmar ; Glaesmer, Heide</creator><creatorcontrib>Wirtz, Markus A. ; Röttele, Nicole ; Morfeld, Matthias ; Brähler, Elmar ; Glaesmer, Heide</creatorcontrib><description>If information on single items in the Short Form–12 health survey (SF-12) is missing, the analysis of only complete cases causes a loss of statistical power and, in case of nonrandom missing data (MD), systematic bias. This study aimed at evaluating the concordance of real patient data and data estimated by different MD imputation procedures in the items of the SF-12 assessment. For this ends, MD were examined in a sample of 1,137 orthopedic patients. Additionally, MD were simulated (a) in the subsample of orthopedic patients exhibiting no MD (n = 810; 71%) as well as (b) in a sample of 6,970 respondents representing the German general population (95.8% participants with complete data) using logistic regression modelling. Simulated MD were replaced by mean values as well as regression-, expectation-maximization- (EM-), and multiple imputation estimates. Higher age and lower education were associated with enhanced probabilities of MD. In terms of accuracy in both data sets, the EM-procedure (ICC2,1 = .33-.72) outperformed alternative estimation approaches substantially (e.g., regression imputation: ICC2,1 = .18-.48). The EM-algorithm can be recommended to estimate MD in the items of the SF-12, because it reproduces the actual patient data most accurately.</description><identifier>ISSN: 1073-1911</identifier><identifier>ISSN: 1552-3489</identifier><identifier>EISSN: 1552-3489</identifier><identifier>DOI: 10.1177/1073191120952886</identifier><identifier>PMID: 32864983</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Algorithms ; Bias ; Health Surveys ; Humans ; Logistic Models ; Probability</subject><ispartof>Assessment (Odessa, Fla.), 2021-10, Vol.28 (7), p.1785-1798</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020 2020 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-f551848aee4124eb9bcb2a9d6c82a8e9d8484ca240a0bdc02f4292743f04cfe93</citedby><cites>FETCH-LOGICAL-c500t-f551848aee4124eb9bcb2a9d6c82a8e9d8484ca240a0bdc02f4292743f04cfe93</cites><orcidid>0000-0002-8296-3956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1073191120952886$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1073191120952886$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,21806,27911,27912,43608,43609</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32864983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wirtz, Markus A.</creatorcontrib><creatorcontrib>Röttele, Nicole</creatorcontrib><creatorcontrib>Morfeld, Matthias</creatorcontrib><creatorcontrib>Brähler, Elmar</creatorcontrib><creatorcontrib>Glaesmer, Heide</creatorcontrib><title>Handling Missing Data in the Short Form–12 Health Survey (SF-12): Concordance of Real Patient Data and Data Estimated by Missing Data Imputation Procedures</title><title>Assessment (Odessa, Fla.)</title><addtitle>Assessment</addtitle><description>If information on single items in the Short Form–12 health survey (SF-12) is missing, the analysis of only complete cases causes a loss of statistical power and, in case of nonrandom missing data (MD), systematic bias. This study aimed at evaluating the concordance of real patient data and data estimated by different MD imputation procedures in the items of the SF-12 assessment. For this ends, MD were examined in a sample of 1,137 orthopedic patients. Additionally, MD were simulated (a) in the subsample of orthopedic patients exhibiting no MD (n = 810; 71%) as well as (b) in a sample of 6,970 respondents representing the German general population (95.8% participants with complete data) using logistic regression modelling. Simulated MD were replaced by mean values as well as regression-, expectation-maximization- (EM-), and multiple imputation estimates. Higher age and lower education were associated with enhanced probabilities of MD. In terms of accuracy in both data sets, the EM-procedure (ICC2,1 = .33-.72) outperformed alternative estimation approaches substantially (e.g., regression imputation: ICC2,1 = .18-.48). The EM-algorithm can be recommended to estimate MD in the items of the SF-12, because it reproduces the actual patient data most accurately.</description><subject>Algorithms</subject><subject>Bias</subject><subject>Health Surveys</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Probability</subject><issn>1073-1911</issn><issn>1552-3489</issn><issn>1552-3489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>EIF</sourceid><recordid>eNp1UctuEzEUtVARfcCeFfKyLAZsj53YXVRCoSGViqgIrC2P504y1YwdbE-l7PoPXffn-iV1NKWilVjdK53HPboHofeUfKJ0Ov1MybSkilJGlGBSTl6hAyoEK0ou1V7eM1zs8H10GOMVIVRMlHyD9ksmJ1zJ8gDdLYyru9at8Pc2xt38apLBrcNpDXi59iHhuQ_9_c0tZXgBpktrvBzCNWzx8XJeUPbxBM-8sz7UxlnAvsE_MwtfmtSCS6NdvjEuZzG1vUlQ42r7_OJ5vxlS1niHL4O3UA8B4lv0ujFdhHeP8wj9np_9mi2Kix_fzmdfLgorCElFIwSVXBoAThmHSlW2YkbVEyuZkaDqDHJrGCeGVLUlrOFMsSkvG8JtA6o8Qqej72aoeqhtDh5Mpzchhw1b7U2rnyOuXeuVv9aSC6JUmQ2OHw2C_zNATLpvo4WuMw78EDXjpVRKCL6jkpFqg48xQPN0hhK9a1W_bDVLPvwb70nwt8ZMKEZCNCvQV34ILr_r_4YP7fqryw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Wirtz, Markus A.</creator><creator>Röttele, Nicole</creator><creator>Morfeld, Matthias</creator><creator>Brähler, Elmar</creator><creator>Glaesmer, Heide</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8296-3956</orcidid></search><sort><creationdate>20211001</creationdate><title>Handling Missing Data in the Short Form–12 Health Survey (SF-12): Concordance of Real Patient Data and Data Estimated by Missing Data Imputation Procedures</title><author>Wirtz, Markus A. ; Röttele, Nicole ; Morfeld, Matthias ; Brähler, Elmar ; Glaesmer, Heide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-f551848aee4124eb9bcb2a9d6c82a8e9d8484ca240a0bdc02f4292743f04cfe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bias</topic><topic>Health Surveys</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wirtz, Markus A.</creatorcontrib><creatorcontrib>Röttele, Nicole</creatorcontrib><creatorcontrib>Morfeld, Matthias</creatorcontrib><creatorcontrib>Brähler, Elmar</creatorcontrib><creatorcontrib>Glaesmer, Heide</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Assessment (Odessa, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wirtz, Markus A.</au><au>Röttele, Nicole</au><au>Morfeld, Matthias</au><au>Brähler, Elmar</au><au>Glaesmer, Heide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Handling Missing Data in the Short Form–12 Health Survey (SF-12): Concordance of Real Patient Data and Data Estimated by Missing Data Imputation Procedures</atitle><jtitle>Assessment (Odessa, Fla.)</jtitle><addtitle>Assessment</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>28</volume><issue>7</issue><spage>1785</spage><epage>1798</epage><pages>1785-1798</pages><issn>1073-1911</issn><issn>1552-3489</issn><eissn>1552-3489</eissn><abstract>If information on single items in the Short Form–12 health survey (SF-12) is missing, the analysis of only complete cases causes a loss of statistical power and, in case of nonrandom missing data (MD), systematic bias. This study aimed at evaluating the concordance of real patient data and data estimated by different MD imputation procedures in the items of the SF-12 assessment. For this ends, MD were examined in a sample of 1,137 orthopedic patients. Additionally, MD were simulated (a) in the subsample of orthopedic patients exhibiting no MD (n = 810; 71%) as well as (b) in a sample of 6,970 respondents representing the German general population (95.8% participants with complete data) using logistic regression modelling. Simulated MD were replaced by mean values as well as regression-, expectation-maximization- (EM-), and multiple imputation estimates. Higher age and lower education were associated with enhanced probabilities of MD. In terms of accuracy in both data sets, the EM-procedure (ICC2,1 = .33-.72) outperformed alternative estimation approaches substantially (e.g., regression imputation: ICC2,1 = .18-.48). The EM-algorithm can be recommended to estimate MD in the items of the SF-12, because it reproduces the actual patient data most accurately.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>32864983</pmid><doi>10.1177/1073191120952886</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8296-3956</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-1911 |
ispartof | Assessment (Odessa, Fla.), 2021-10, Vol.28 (7), p.1785-1798 |
issn | 1073-1911 1552-3489 1552-3489 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8450993 |
source | MEDLINE; SAGE Complete A-Z List |
subjects | Algorithms Bias Health Surveys Humans Logistic Models Probability |
title | Handling Missing Data in the Short Form–12 Health Survey (SF-12): Concordance of Real Patient Data and Data Estimated by Missing Data Imputation Procedures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Handling%20Missing%20Data%20in%20the%20Short%20Form%E2%80%9312%20Health%20Survey%20(SF-12):%20Concordance%20of%20Real%20Patient%20Data%20and%20Data%20Estimated%20by%20Missing%20Data%20Imputation%20Procedures&rft.jtitle=Assessment%20(Odessa,%20Fla.)&rft.au=Wirtz,%20Markus%20A.&rft.date=2021-10-01&rft.volume=28&rft.issue=7&rft.spage=1785&rft.epage=1798&rft.pages=1785-1798&rft.issn=1073-1911&rft.eissn=1552-3489&rft_id=info:doi/10.1177/1073191120952886&rft_dat=%3Cproquest_pubme%3E2438995543%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438995543&rft_id=info:pmid/32864983&rft_sage_id=10.1177_1073191120952886&rfr_iscdi=true |