Handling Missing Data in the Short Form–12 Health Survey (SF-12): Concordance of Real Patient Data and Data Estimated by Missing Data Imputation Procedures

If information on single items in the Short Form–12 health survey (SF-12) is missing, the analysis of only complete cases causes a loss of statistical power and, in case of nonrandom missing data (MD), systematic bias. This study aimed at evaluating the concordance of real patient data and data esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Assessment (Odessa, Fla.) Fla.), 2021-10, Vol.28 (7), p.1785-1798
Hauptverfasser: Wirtz, Markus A., Röttele, Nicole, Morfeld, Matthias, Brähler, Elmar, Glaesmer, Heide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1798
container_issue 7
container_start_page 1785
container_title Assessment (Odessa, Fla.)
container_volume 28
creator Wirtz, Markus A.
Röttele, Nicole
Morfeld, Matthias
Brähler, Elmar
Glaesmer, Heide
description If information on single items in the Short Form–12 health survey (SF-12) is missing, the analysis of only complete cases causes a loss of statistical power and, in case of nonrandom missing data (MD), systematic bias. This study aimed at evaluating the concordance of real patient data and data estimated by different MD imputation procedures in the items of the SF-12 assessment. For this ends, MD were examined in a sample of 1,137 orthopedic patients. Additionally, MD were simulated (a) in the subsample of orthopedic patients exhibiting no MD (n = 810; 71%) as well as (b) in a sample of 6,970 respondents representing the German general population (95.8% participants with complete data) using logistic regression modelling. Simulated MD were replaced by mean values as well as regression-, expectation-maximization- (EM-), and multiple imputation estimates. Higher age and lower education were associated with enhanced probabilities of MD. In terms of accuracy in both data sets, the EM-procedure (ICC2,1 = .33-.72) outperformed alternative estimation approaches substantially (e.g., regression imputation: ICC2,1 = .18-.48). The EM-algorithm can be recommended to estimate MD in the items of the SF-12, because it reproduces the actual patient data most accurately.
doi_str_mv 10.1177/1073191120952886
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8450993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1073191120952886</sage_id><sourcerecordid>2438995543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-f551848aee4124eb9bcb2a9d6c82a8e9d8484ca240a0bdc02f4292743f04cfe93</originalsourceid><addsrcrecordid>eNp1UctuEzEUtVARfcCeFfKyLAZsj53YXVRCoSGViqgIrC2P504y1YwdbE-l7PoPXffn-iV1NKWilVjdK53HPboHofeUfKJ0Ov1MybSkilJGlGBSTl6hAyoEK0ou1V7eM1zs8H10GOMVIVRMlHyD9ksmJ1zJ8gDdLYyru9at8Pc2xt38apLBrcNpDXi59iHhuQ_9_c0tZXgBpktrvBzCNWzx8XJeUPbxBM-8sz7UxlnAvsE_MwtfmtSCS6NdvjEuZzG1vUlQ42r7_OJ5vxlS1niHL4O3UA8B4lv0ujFdhHeP8wj9np_9mi2Kix_fzmdfLgorCElFIwSVXBoAThmHSlW2YkbVEyuZkaDqDHJrGCeGVLUlrOFMsSkvG8JtA6o8Qqej72aoeqhtDh5Mpzchhw1b7U2rnyOuXeuVv9aSC6JUmQ2OHw2C_zNATLpvo4WuMw78EDXjpVRKCL6jkpFqg48xQPN0hhK9a1W_bDVLPvwb70nwt8ZMKEZCNCvQV34ILr_r_4YP7fqryw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438995543</pqid></control><display><type>article</type><title>Handling Missing Data in the Short Form–12 Health Survey (SF-12): Concordance of Real Patient Data and Data Estimated by Missing Data Imputation Procedures</title><source>MEDLINE</source><source>SAGE Complete A-Z List</source><creator>Wirtz, Markus A. ; Röttele, Nicole ; Morfeld, Matthias ; Brähler, Elmar ; Glaesmer, Heide</creator><creatorcontrib>Wirtz, Markus A. ; Röttele, Nicole ; Morfeld, Matthias ; Brähler, Elmar ; Glaesmer, Heide</creatorcontrib><description>If information on single items in the Short Form–12 health survey (SF-12) is missing, the analysis of only complete cases causes a loss of statistical power and, in case of nonrandom missing data (MD), systematic bias. This study aimed at evaluating the concordance of real patient data and data estimated by different MD imputation procedures in the items of the SF-12 assessment. For this ends, MD were examined in a sample of 1,137 orthopedic patients. Additionally, MD were simulated (a) in the subsample of orthopedic patients exhibiting no MD (n = 810; 71%) as well as (b) in a sample of 6,970 respondents representing the German general population (95.8% participants with complete data) using logistic regression modelling. Simulated MD were replaced by mean values as well as regression-, expectation-maximization- (EM-), and multiple imputation estimates. Higher age and lower education were associated with enhanced probabilities of MD. In terms of accuracy in both data sets, the EM-procedure (ICC2,1 = .33-.72) outperformed alternative estimation approaches substantially (e.g., regression imputation: ICC2,1 = .18-.48). The EM-algorithm can be recommended to estimate MD in the items of the SF-12, because it reproduces the actual patient data most accurately.</description><identifier>ISSN: 1073-1911</identifier><identifier>ISSN: 1552-3489</identifier><identifier>EISSN: 1552-3489</identifier><identifier>DOI: 10.1177/1073191120952886</identifier><identifier>PMID: 32864983</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Algorithms ; Bias ; Health Surveys ; Humans ; Logistic Models ; Probability</subject><ispartof>Assessment (Odessa, Fla.), 2021-10, Vol.28 (7), p.1785-1798</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020 2020 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-f551848aee4124eb9bcb2a9d6c82a8e9d8484ca240a0bdc02f4292743f04cfe93</citedby><cites>FETCH-LOGICAL-c500t-f551848aee4124eb9bcb2a9d6c82a8e9d8484ca240a0bdc02f4292743f04cfe93</cites><orcidid>0000-0002-8296-3956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1073191120952886$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1073191120952886$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,21806,27911,27912,43608,43609</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32864983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wirtz, Markus A.</creatorcontrib><creatorcontrib>Röttele, Nicole</creatorcontrib><creatorcontrib>Morfeld, Matthias</creatorcontrib><creatorcontrib>Brähler, Elmar</creatorcontrib><creatorcontrib>Glaesmer, Heide</creatorcontrib><title>Handling Missing Data in the Short Form–12 Health Survey (SF-12): Concordance of Real Patient Data and Data Estimated by Missing Data Imputation Procedures</title><title>Assessment (Odessa, Fla.)</title><addtitle>Assessment</addtitle><description>If information on single items in the Short Form–12 health survey (SF-12) is missing, the analysis of only complete cases causes a loss of statistical power and, in case of nonrandom missing data (MD), systematic bias. This study aimed at evaluating the concordance of real patient data and data estimated by different MD imputation procedures in the items of the SF-12 assessment. For this ends, MD were examined in a sample of 1,137 orthopedic patients. Additionally, MD were simulated (a) in the subsample of orthopedic patients exhibiting no MD (n = 810; 71%) as well as (b) in a sample of 6,970 respondents representing the German general population (95.8% participants with complete data) using logistic regression modelling. Simulated MD were replaced by mean values as well as regression-, expectation-maximization- (EM-), and multiple imputation estimates. Higher age and lower education were associated with enhanced probabilities of MD. In terms of accuracy in both data sets, the EM-procedure (ICC2,1 = .33-.72) outperformed alternative estimation approaches substantially (e.g., regression imputation: ICC2,1 = .18-.48). The EM-algorithm can be recommended to estimate MD in the items of the SF-12, because it reproduces the actual patient data most accurately.</description><subject>Algorithms</subject><subject>Bias</subject><subject>Health Surveys</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Probability</subject><issn>1073-1911</issn><issn>1552-3489</issn><issn>1552-3489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>EIF</sourceid><recordid>eNp1UctuEzEUtVARfcCeFfKyLAZsj53YXVRCoSGViqgIrC2P504y1YwdbE-l7PoPXffn-iV1NKWilVjdK53HPboHofeUfKJ0Ov1MybSkilJGlGBSTl6hAyoEK0ou1V7eM1zs8H10GOMVIVRMlHyD9ksmJ1zJ8gDdLYyru9at8Pc2xt38apLBrcNpDXi59iHhuQ_9_c0tZXgBpktrvBzCNWzx8XJeUPbxBM-8sz7UxlnAvsE_MwtfmtSCS6NdvjEuZzG1vUlQ42r7_OJ5vxlS1niHL4O3UA8B4lv0ujFdhHeP8wj9np_9mi2Kix_fzmdfLgorCElFIwSVXBoAThmHSlW2YkbVEyuZkaDqDHJrGCeGVLUlrOFMsSkvG8JtA6o8Qqej72aoeqhtDh5Mpzchhw1b7U2rnyOuXeuVv9aSC6JUmQ2OHw2C_zNATLpvo4WuMw78EDXjpVRKCL6jkpFqg48xQPN0hhK9a1W_bDVLPvwb70nwt8ZMKEZCNCvQV34ILr_r_4YP7fqryw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Wirtz, Markus A.</creator><creator>Röttele, Nicole</creator><creator>Morfeld, Matthias</creator><creator>Brähler, Elmar</creator><creator>Glaesmer, Heide</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8296-3956</orcidid></search><sort><creationdate>20211001</creationdate><title>Handling Missing Data in the Short Form–12 Health Survey (SF-12): Concordance of Real Patient Data and Data Estimated by Missing Data Imputation Procedures</title><author>Wirtz, Markus A. ; Röttele, Nicole ; Morfeld, Matthias ; Brähler, Elmar ; Glaesmer, Heide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-f551848aee4124eb9bcb2a9d6c82a8e9d8484ca240a0bdc02f4292743f04cfe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bias</topic><topic>Health Surveys</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wirtz, Markus A.</creatorcontrib><creatorcontrib>Röttele, Nicole</creatorcontrib><creatorcontrib>Morfeld, Matthias</creatorcontrib><creatorcontrib>Brähler, Elmar</creatorcontrib><creatorcontrib>Glaesmer, Heide</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Assessment (Odessa, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wirtz, Markus A.</au><au>Röttele, Nicole</au><au>Morfeld, Matthias</au><au>Brähler, Elmar</au><au>Glaesmer, Heide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Handling Missing Data in the Short Form–12 Health Survey (SF-12): Concordance of Real Patient Data and Data Estimated by Missing Data Imputation Procedures</atitle><jtitle>Assessment (Odessa, Fla.)</jtitle><addtitle>Assessment</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>28</volume><issue>7</issue><spage>1785</spage><epage>1798</epage><pages>1785-1798</pages><issn>1073-1911</issn><issn>1552-3489</issn><eissn>1552-3489</eissn><abstract>If information on single items in the Short Form–12 health survey (SF-12) is missing, the analysis of only complete cases causes a loss of statistical power and, in case of nonrandom missing data (MD), systematic bias. This study aimed at evaluating the concordance of real patient data and data estimated by different MD imputation procedures in the items of the SF-12 assessment. For this ends, MD were examined in a sample of 1,137 orthopedic patients. Additionally, MD were simulated (a) in the subsample of orthopedic patients exhibiting no MD (n = 810; 71%) as well as (b) in a sample of 6,970 respondents representing the German general population (95.8% participants with complete data) using logistic regression modelling. Simulated MD were replaced by mean values as well as regression-, expectation-maximization- (EM-), and multiple imputation estimates. Higher age and lower education were associated with enhanced probabilities of MD. In terms of accuracy in both data sets, the EM-procedure (ICC2,1 = .33-.72) outperformed alternative estimation approaches substantially (e.g., regression imputation: ICC2,1 = .18-.48). The EM-algorithm can be recommended to estimate MD in the items of the SF-12, because it reproduces the actual patient data most accurately.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>32864983</pmid><doi>10.1177/1073191120952886</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8296-3956</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-1911
ispartof Assessment (Odessa, Fla.), 2021-10, Vol.28 (7), p.1785-1798
issn 1073-1911
1552-3489
1552-3489
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8450993
source MEDLINE; SAGE Complete A-Z List
subjects Algorithms
Bias
Health Surveys
Humans
Logistic Models
Probability
title Handling Missing Data in the Short Form–12 Health Survey (SF-12): Concordance of Real Patient Data and Data Estimated by Missing Data Imputation Procedures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Handling%20Missing%20Data%20in%20the%20Short%20Form%E2%80%9312%20Health%20Survey%20(SF-12):%20Concordance%20of%20Real%20Patient%20Data%20and%20Data%20Estimated%20by%20Missing%20Data%20Imputation%20Procedures&rft.jtitle=Assessment%20(Odessa,%20Fla.)&rft.au=Wirtz,%20Markus%20A.&rft.date=2021-10-01&rft.volume=28&rft.issue=7&rft.spage=1785&rft.epage=1798&rft.pages=1785-1798&rft.issn=1073-1911&rft.eissn=1552-3489&rft_id=info:doi/10.1177/1073191120952886&rft_dat=%3Cproquest_pubme%3E2438995543%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438995543&rft_id=info:pmid/32864983&rft_sage_id=10.1177_1073191120952886&rfr_iscdi=true