Rational design of ASCT2 inhibitors using an integrated experimental-computational approach

ASCT2 (SLC1A5) is a sodium-dependent neutral amino acid transporter that controls amino acid homeostasis in peripheral tissues. In cancer, ASCT2 is up-regulated where it modulates intracellular glutamine levels, fueling cell proliferation. Nutrient deprivation via ASCT2 inhibition provides a potenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-09, Vol.118 (37), p.1-10
Hauptverfasser: Garibsingh, Rachel-Ann A., Ndaru, Elias, Garaeva, Alisa A., Shi, Yueyue, Zielewicz, Laura, Zakrepine, Paul, Bonomi, Massimiliano, Slotboom, Dirk J., Paulino, Cristina, Grewer, Christof, Schlessinger, Avner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 37
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Garibsingh, Rachel-Ann A.
Ndaru, Elias
Garaeva, Alisa A.
Shi, Yueyue
Zielewicz, Laura
Zakrepine, Paul
Bonomi, Massimiliano
Slotboom, Dirk J.
Paulino, Cristina
Grewer, Christof
Schlessinger, Avner
description ASCT2 (SLC1A5) is a sodium-dependent neutral amino acid transporter that controls amino acid homeostasis in peripheral tissues. In cancer, ASCT2 is up-regulated where it modulates intracellular glutamine levels, fueling cell proliferation. Nutrient deprivation via ASCT2 inhibition provides a potential strategy for cancer therapy. Here, we rationally designed stereospecific inhibitors exploiting specific subpockets in the substrate binding site using computational modeling and cryo-electron microscopy (cryo-EM). The final structures combined with molecular dynamics simulations reveal multiple pharmacologically relevant conformations in the ASCT2 binding site as well as a previously unknown mechanism of stereospecific inhibition. Furthermore, this integrated analysis guided the design of a series of unique ASCT2 inhibitors. Our results provide a framework for future development of cancer therapeutics targeting nutrient transport via ASCT2, as well as demonstrate the utility of combining computational modeling and cryo-EM for solute carrier ligand discovery.
doi_str_mv 10.1073/pnas.2104093118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075737</jstor_id><sourcerecordid>27075737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-b7afa5ed195db009c28d127b10b12adf6b5436705fad3fbdba3df75ed1f08bdd3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS1ERZfCmRMoEhc4pB1_JI4vlVYroJVWqgTlxMGyY2fXq6wd7KSC_x6HbRfak6WZ37x544fQGwznGDi9GLxK5wQDA0Exbp6hBQaBy5oJeI4WAISXDSPsFL1MaQcAomrgBTqlrAIuRLVAP76q0QWv-sLY5Da-CF2x_La6JYXzW6fdGGIqpuT8plA-10a7iWq0prC_Bhvd3vpR9WUb9sM0PiipYYhBtdtX6KRTfbKv798z9P3zp9vVVbm--XK9Wq7LlnE-lpqrTlXWYFEZnS22pDGYcI1BY6JMV-uK0ZpD1SlDO220oqbj80AHjTaGnqHLg-4w6b01bfYUVS-HbE_F3zIoJx93vNvKTbiTDWOCYZYFPh4Etk_GrpZrOdeAMsxZU9-RzH64XxbDz8mmUe5dam3fK2_DlCSpOBa4JqzO6Psn6C5MMf_QX4o2AqiYl18cqDaGlKLtjg4wyDlkOYcs_4WcJ979f--Rf0g1A28PwC7l_I59woHnvZz-AfofroI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573890394</pqid></control><display><type>article</type><title>Rational design of ASCT2 inhibitors using an integrated experimental-computational approach</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Garibsingh, Rachel-Ann A. ; Ndaru, Elias ; Garaeva, Alisa A. ; Shi, Yueyue ; Zielewicz, Laura ; Zakrepine, Paul ; Bonomi, Massimiliano ; Slotboom, Dirk J. ; Paulino, Cristina ; Grewer, Christof ; Schlessinger, Avner</creator><creatorcontrib>Garibsingh, Rachel-Ann A. ; Ndaru, Elias ; Garaeva, Alisa A. ; Shi, Yueyue ; Zielewicz, Laura ; Zakrepine, Paul ; Bonomi, Massimiliano ; Slotboom, Dirk J. ; Paulino, Cristina ; Grewer, Christof ; Schlessinger, Avner</creatorcontrib><description>ASCT2 (SLC1A5) is a sodium-dependent neutral amino acid transporter that controls amino acid homeostasis in peripheral tissues. In cancer, ASCT2 is up-regulated where it modulates intracellular glutamine levels, fueling cell proliferation. Nutrient deprivation via ASCT2 inhibition provides a potential strategy for cancer therapy. Here, we rationally designed stereospecific inhibitors exploiting specific subpockets in the substrate binding site using computational modeling and cryo-electron microscopy (cryo-EM). The final structures combined with molecular dynamics simulations reveal multiple pharmacologically relevant conformations in the ASCT2 binding site as well as a previously unknown mechanism of stereospecific inhibition. Furthermore, this integrated analysis guided the design of a series of unique ASCT2 inhibitors. Our results provide a framework for future development of cancer therapeutics targeting nutrient transport via ASCT2, as well as demonstrate the utility of combining computational modeling and cryo-EM for solute carrier ligand discovery.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2104093118</identifier><identifier>PMID: 34507995</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Transport System ASC - antagonists &amp; inhibitors ; Amino Acid Transport System ASC - metabolism ; Amino acids ; Binding Sites ; Binding, Competitive ; Biochemistry ; Biochemistry, Molecular Biology ; Biological Sciences ; Cancer ; Cell proliferation ; Computational Chemistry ; Computer applications ; Cryoelectron Microscopy - methods ; Deprivation ; Drug Design ; Drug development ; Electron microscopy ; Glutamine ; Glutamine - metabolism ; Homeostasis ; Humans ; Inhibitors ; Life Sciences ; Minor Histocompatibility Antigens - metabolism ; Molecular Docking Simulation ; Molecular dynamics ; Nutrient transport ; Pharmaceutical Preparations - administration &amp; dosage ; Pharmaceutical Preparations - chemistry ; Protein Binding ; Protein Domains ; Protein Structure, Tertiary ; Structure-Activity Relationship</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (37), p.1-10</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Sep 14, 2021</rights><rights>Attribution</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-b7afa5ed195db009c28d127b10b12adf6b5436705fad3fbdba3df75ed1f08bdd3</citedby><cites>FETCH-LOGICAL-c477t-b7afa5ed195db009c28d127b10b12adf6b5436705fad3fbdba3df75ed1f08bdd3</cites><orcidid>0000-0002-8342-9878 ; 0000-0003-4007-7814 ; 0000-0002-7321-0004 ; 0000-0002-1400-9191 ; 0000-0001-7017-109X ; 0000-0002-9284-0407 ; 0000-0002-5804-9689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075737$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075737$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34507995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03417486$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Garibsingh, Rachel-Ann A.</creatorcontrib><creatorcontrib>Ndaru, Elias</creatorcontrib><creatorcontrib>Garaeva, Alisa A.</creatorcontrib><creatorcontrib>Shi, Yueyue</creatorcontrib><creatorcontrib>Zielewicz, Laura</creatorcontrib><creatorcontrib>Zakrepine, Paul</creatorcontrib><creatorcontrib>Bonomi, Massimiliano</creatorcontrib><creatorcontrib>Slotboom, Dirk J.</creatorcontrib><creatorcontrib>Paulino, Cristina</creatorcontrib><creatorcontrib>Grewer, Christof</creatorcontrib><creatorcontrib>Schlessinger, Avner</creatorcontrib><title>Rational design of ASCT2 inhibitors using an integrated experimental-computational approach</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>ASCT2 (SLC1A5) is a sodium-dependent neutral amino acid transporter that controls amino acid homeostasis in peripheral tissues. In cancer, ASCT2 is up-regulated where it modulates intracellular glutamine levels, fueling cell proliferation. Nutrient deprivation via ASCT2 inhibition provides a potential strategy for cancer therapy. Here, we rationally designed stereospecific inhibitors exploiting specific subpockets in the substrate binding site using computational modeling and cryo-electron microscopy (cryo-EM). The final structures combined with molecular dynamics simulations reveal multiple pharmacologically relevant conformations in the ASCT2 binding site as well as a previously unknown mechanism of stereospecific inhibition. Furthermore, this integrated analysis guided the design of a series of unique ASCT2 inhibitors. Our results provide a framework for future development of cancer therapeutics targeting nutrient transport via ASCT2, as well as demonstrate the utility of combining computational modeling and cryo-EM for solute carrier ligand discovery.</description><subject>Amino Acid Transport System ASC - antagonists &amp; inhibitors</subject><subject>Amino Acid Transport System ASC - metabolism</subject><subject>Amino acids</subject><subject>Binding Sites</subject><subject>Binding, Competitive</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Cell proliferation</subject><subject>Computational Chemistry</subject><subject>Computer applications</subject><subject>Cryoelectron Microscopy - methods</subject><subject>Deprivation</subject><subject>Drug Design</subject><subject>Drug development</subject><subject>Electron microscopy</subject><subject>Glutamine</subject><subject>Glutamine - metabolism</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>Life Sciences</subject><subject>Minor Histocompatibility Antigens - metabolism</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Nutrient transport</subject><subject>Pharmaceutical Preparations - administration &amp; dosage</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein Structure, Tertiary</subject><subject>Structure-Activity Relationship</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS1ERZfCmRMoEhc4pB1_JI4vlVYroJVWqgTlxMGyY2fXq6wd7KSC_x6HbRfak6WZ37x544fQGwznGDi9GLxK5wQDA0Exbp6hBQaBy5oJeI4WAISXDSPsFL1MaQcAomrgBTqlrAIuRLVAP76q0QWv-sLY5Da-CF2x_La6JYXzW6fdGGIqpuT8plA-10a7iWq0prC_Bhvd3vpR9WUb9sM0PiipYYhBtdtX6KRTfbKv798z9P3zp9vVVbm--XK9Wq7LlnE-lpqrTlXWYFEZnS22pDGYcI1BY6JMV-uK0ZpD1SlDO220oqbj80AHjTaGnqHLg-4w6b01bfYUVS-HbE_F3zIoJx93vNvKTbiTDWOCYZYFPh4Etk_GrpZrOdeAMsxZU9-RzH64XxbDz8mmUe5dam3fK2_DlCSpOBa4JqzO6Psn6C5MMf_QX4o2AqiYl18cqDaGlKLtjg4wyDlkOYcs_4WcJ979f--Rf0g1A28PwC7l_I59woHnvZz-AfofroI</recordid><startdate>20210914</startdate><enddate>20210914</enddate><creator>Garibsingh, Rachel-Ann A.</creator><creator>Ndaru, Elias</creator><creator>Garaeva, Alisa A.</creator><creator>Shi, Yueyue</creator><creator>Zielewicz, Laura</creator><creator>Zakrepine, Paul</creator><creator>Bonomi, Massimiliano</creator><creator>Slotboom, Dirk J.</creator><creator>Paulino, Cristina</creator><creator>Grewer, Christof</creator><creator>Schlessinger, Avner</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8342-9878</orcidid><orcidid>https://orcid.org/0000-0003-4007-7814</orcidid><orcidid>https://orcid.org/0000-0002-7321-0004</orcidid><orcidid>https://orcid.org/0000-0002-1400-9191</orcidid><orcidid>https://orcid.org/0000-0001-7017-109X</orcidid><orcidid>https://orcid.org/0000-0002-9284-0407</orcidid><orcidid>https://orcid.org/0000-0002-5804-9689</orcidid></search><sort><creationdate>20210914</creationdate><title>Rational design of ASCT2 inhibitors using an integrated experimental-computational approach</title><author>Garibsingh, Rachel-Ann A. ; Ndaru, Elias ; Garaeva, Alisa A. ; Shi, Yueyue ; Zielewicz, Laura ; Zakrepine, Paul ; Bonomi, Massimiliano ; Slotboom, Dirk J. ; Paulino, Cristina ; Grewer, Christof ; Schlessinger, Avner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-b7afa5ed195db009c28d127b10b12adf6b5436705fad3fbdba3df75ed1f08bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino Acid Transport System ASC - antagonists &amp; inhibitors</topic><topic>Amino Acid Transport System ASC - metabolism</topic><topic>Amino acids</topic><topic>Binding Sites</topic><topic>Binding, Competitive</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Cell proliferation</topic><topic>Computational Chemistry</topic><topic>Computer applications</topic><topic>Cryoelectron Microscopy - methods</topic><topic>Deprivation</topic><topic>Drug Design</topic><topic>Drug development</topic><topic>Electron microscopy</topic><topic>Glutamine</topic><topic>Glutamine - metabolism</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>Life Sciences</topic><topic>Minor Histocompatibility Antigens - metabolism</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Nutrient transport</topic><topic>Pharmaceutical Preparations - administration &amp; dosage</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein Structure, Tertiary</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garibsingh, Rachel-Ann A.</creatorcontrib><creatorcontrib>Ndaru, Elias</creatorcontrib><creatorcontrib>Garaeva, Alisa A.</creatorcontrib><creatorcontrib>Shi, Yueyue</creatorcontrib><creatorcontrib>Zielewicz, Laura</creatorcontrib><creatorcontrib>Zakrepine, Paul</creatorcontrib><creatorcontrib>Bonomi, Massimiliano</creatorcontrib><creatorcontrib>Slotboom, Dirk J.</creatorcontrib><creatorcontrib>Paulino, Cristina</creatorcontrib><creatorcontrib>Grewer, Christof</creatorcontrib><creatorcontrib>Schlessinger, Avner</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garibsingh, Rachel-Ann A.</au><au>Ndaru, Elias</au><au>Garaeva, Alisa A.</au><au>Shi, Yueyue</au><au>Zielewicz, Laura</au><au>Zakrepine, Paul</au><au>Bonomi, Massimiliano</au><au>Slotboom, Dirk J.</au><au>Paulino, Cristina</au><au>Grewer, Christof</au><au>Schlessinger, Avner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational design of ASCT2 inhibitors using an integrated experimental-computational approach</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-09-14</date><risdate>2021</risdate><volume>118</volume><issue>37</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>ASCT2 (SLC1A5) is a sodium-dependent neutral amino acid transporter that controls amino acid homeostasis in peripheral tissues. In cancer, ASCT2 is up-regulated where it modulates intracellular glutamine levels, fueling cell proliferation. Nutrient deprivation via ASCT2 inhibition provides a potential strategy for cancer therapy. Here, we rationally designed stereospecific inhibitors exploiting specific subpockets in the substrate binding site using computational modeling and cryo-electron microscopy (cryo-EM). The final structures combined with molecular dynamics simulations reveal multiple pharmacologically relevant conformations in the ASCT2 binding site as well as a previously unknown mechanism of stereospecific inhibition. Furthermore, this integrated analysis guided the design of a series of unique ASCT2 inhibitors. Our results provide a framework for future development of cancer therapeutics targeting nutrient transport via ASCT2, as well as demonstrate the utility of combining computational modeling and cryo-EM for solute carrier ligand discovery.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34507995</pmid><doi>10.1073/pnas.2104093118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8342-9878</orcidid><orcidid>https://orcid.org/0000-0003-4007-7814</orcidid><orcidid>https://orcid.org/0000-0002-7321-0004</orcidid><orcidid>https://orcid.org/0000-0002-1400-9191</orcidid><orcidid>https://orcid.org/0000-0001-7017-109X</orcidid><orcidid>https://orcid.org/0000-0002-9284-0407</orcidid><orcidid>https://orcid.org/0000-0002-5804-9689</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (37), p.1-10
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449414
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Transport System ASC - antagonists & inhibitors
Amino Acid Transport System ASC - metabolism
Amino acids
Binding Sites
Binding, Competitive
Biochemistry
Biochemistry, Molecular Biology
Biological Sciences
Cancer
Cell proliferation
Computational Chemistry
Computer applications
Cryoelectron Microscopy - methods
Deprivation
Drug Design
Drug development
Electron microscopy
Glutamine
Glutamine - metabolism
Homeostasis
Humans
Inhibitors
Life Sciences
Minor Histocompatibility Antigens - metabolism
Molecular Docking Simulation
Molecular dynamics
Nutrient transport
Pharmaceutical Preparations - administration & dosage
Pharmaceutical Preparations - chemistry
Protein Binding
Protein Domains
Protein Structure, Tertiary
Structure-Activity Relationship
title Rational design of ASCT2 inhibitors using an integrated experimental-computational approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20design%20of%20ASCT2%20inhibitors%20using%20an%20integrated%20experimental-computational%20approach&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Garibsingh,%20Rachel-Ann%20A.&rft.date=2021-09-14&rft.volume=118&rft.issue=37&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2104093118&rft_dat=%3Cjstor_pubme%3E27075737%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573890394&rft_id=info:pmid/34507995&rft_jstor_id=27075737&rfr_iscdi=true