5′-Cap sequestration is an essential determinant of HIV-1 genome packaging

HIV-1 selectively packages two copies of its 5′-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5′ leader of the viral RNA. Although residues within the leader that pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-09, Vol.118 (37), p.1-8
Hauptverfasser: Ding, Pengfei, Kharytonchyk, Siarhei, Kuo, Nansen, Cannistraci, Emily, Flores, Hana, Chaudhary, Ridhi, Sarkar, Mitali, Dong, Xinmei, Telesnitsky, Alice, Summers, Michael F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 37
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Ding, Pengfei
Kharytonchyk, Siarhei
Kuo, Nansen
Cannistraci, Emily
Flores, Hana
Chaudhary, Ridhi
Sarkar, Mitali
Dong, Xinmei
Telesnitsky, Alice
Summers, Michael F.
description HIV-1 selectively packages two copies of its 5′-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5′ leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5′ leader. ΨCES lacks a 5′-tandem hairpin element that sequesters the 5′ cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5′ ribozyme to ΨCES to enable cotranscriptional shedding of the 5′ cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5′ cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5′-capped RNA genomes.
doi_str_mv 10.1073/pnas.2112475118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075731</jstor_id><sourcerecordid>27075731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-722cc9aec6701fc18227be603dad660c16ed73c86627f6b821c3d50d9d6b16653</originalsourceid><addsrcrecordid>eNpdkb1uFDEUhS1ERDaBOhXIEk2aSa5_xj8NEloFEmmlNCSt5fV4Nl5m7MGeRaLLM-WR8iTMsskGqG5xvnvuPToInRA4IyDZ-RBtOaOEUC5rQtQrNCOgSSW4htdoBkBlpTjlh-iolDUA6FrBG3TIONdMSD1Di_rx_qGa2wEX_2Pjy5jtGFLEoWAbsS_FxzHYDjd-9LkP0cYRpxZfXt1WBK98TL3Hg3Xf7SrE1Vt00Nqu-HdP8xjdfLn4Nr-sFtdfr-afF5XjnI2VpNQ5bb0TEkjriKJULr0A1thGCHBE-EYyp4SgshVLRYljTQ2NbsSSCFGzY_Rp5ztslr1v3PRjtp0Zcuht_mWSDeZfJYY7s0o_jdrmlnoyOH0yyOlPatOH4nzX2ejTphhaS2CSUyEn9ON_6DptcpzibSmmlKaSTdT5jnI5lZJ9u3-GgNk2ZbZNmZempo0Pf2fY88_VTMD7HbAuY8p7nUqQ013CfgNvpplv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573889273</pqid></control><display><type>article</type><title>5′-Cap sequestration is an essential determinant of HIV-1 genome packaging</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ding, Pengfei ; Kharytonchyk, Siarhei ; Kuo, Nansen ; Cannistraci, Emily ; Flores, Hana ; Chaudhary, Ridhi ; Sarkar, Mitali ; Dong, Xinmei ; Telesnitsky, Alice ; Summers, Michael F.</creator><creatorcontrib>Ding, Pengfei ; Kharytonchyk, Siarhei ; Kuo, Nansen ; Cannistraci, Emily ; Flores, Hana ; Chaudhary, Ridhi ; Sarkar, Mitali ; Dong, Xinmei ; Telesnitsky, Alice ; Summers, Michael F.</creatorcontrib><description>HIV-1 selectively packages two copies of its 5′-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5′ leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5′ leader. ΨCES lacks a 5′-tandem hairpin element that sequesters the 5′ cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5′ ribozyme to ΨCES to enable cotranscriptional shedding of the 5′ cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5′ cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5′-capped RNA genomes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2112475118</identifier><identifier>PMID: 34493679</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>5' Untranslated Regions - genetics ; Binding sites ; Biological Sciences ; Dimerization ; Dimers ; Encapsidation ; Gag protein ; Genome, Viral ; Genomes ; gRNA ; HEK293 Cells ; HIV ; HIV Infections - virology ; HIV-1 - genetics ; Human immunodeficiency virus ; Humans ; Mutation ; Nucleic Acid Conformation ; Nucleocapsids ; Packaging ; Ribonucleic acid ; RNA ; RNA Caps - chemistry ; RNA Caps - genetics ; RNA Caps - metabolism ; RNA processing ; RNA viruses ; RNA, Viral - chemistry ; RNA, Viral - genetics ; RNA, Viral - metabolism ; Virion - physiology ; Virus Assembly</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (37), p.1-8</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Sep 14, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-722cc9aec6701fc18227be603dad660c16ed73c86627f6b821c3d50d9d6b16653</citedby><cites>FETCH-LOGICAL-c443t-722cc9aec6701fc18227be603dad660c16ed73c86627f6b821c3d50d9d6b16653</cites><orcidid>0000-0003-1824-724X ; 0000-0001-9878-5931 ; 0000-0003-4267-4380 ; 0000-0003-0387-6342 ; 0000-0003-1064-2704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075731$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075731$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34493679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Pengfei</creatorcontrib><creatorcontrib>Kharytonchyk, Siarhei</creatorcontrib><creatorcontrib>Kuo, Nansen</creatorcontrib><creatorcontrib>Cannistraci, Emily</creatorcontrib><creatorcontrib>Flores, Hana</creatorcontrib><creatorcontrib>Chaudhary, Ridhi</creatorcontrib><creatorcontrib>Sarkar, Mitali</creatorcontrib><creatorcontrib>Dong, Xinmei</creatorcontrib><creatorcontrib>Telesnitsky, Alice</creatorcontrib><creatorcontrib>Summers, Michael F.</creatorcontrib><title>5′-Cap sequestration is an essential determinant of HIV-1 genome packaging</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>HIV-1 selectively packages two copies of its 5′-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5′ leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5′ leader. ΨCES lacks a 5′-tandem hairpin element that sequesters the 5′ cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5′ ribozyme to ΨCES to enable cotranscriptional shedding of the 5′ cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5′ cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5′-capped RNA genomes.</description><subject>5' Untranslated Regions - genetics</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Encapsidation</subject><subject>Gag protein</subject><subject>Genome, Viral</subject><subject>Genomes</subject><subject>gRNA</subject><subject>HEK293 Cells</subject><subject>HIV</subject><subject>HIV Infections - virology</subject><subject>HIV-1 - genetics</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleocapsids</subject><subject>Packaging</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Caps - chemistry</subject><subject>RNA Caps - genetics</subject><subject>RNA Caps - metabolism</subject><subject>RNA processing</subject><subject>RNA viruses</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - genetics</subject><subject>RNA, Viral - metabolism</subject><subject>Virion - physiology</subject><subject>Virus Assembly</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkb1uFDEUhS1ERDaBOhXIEk2aSa5_xj8NEloFEmmlNCSt5fV4Nl5m7MGeRaLLM-WR8iTMsskGqG5xvnvuPToInRA4IyDZ-RBtOaOEUC5rQtQrNCOgSSW4htdoBkBlpTjlh-iolDUA6FrBG3TIONdMSD1Di_rx_qGa2wEX_2Pjy5jtGFLEoWAbsS_FxzHYDjd-9LkP0cYRpxZfXt1WBK98TL3Hg3Xf7SrE1Vt00Nqu-HdP8xjdfLn4Nr-sFtdfr-afF5XjnI2VpNQ5bb0TEkjriKJULr0A1thGCHBE-EYyp4SgshVLRYljTQ2NbsSSCFGzY_Rp5ztslr1v3PRjtp0Zcuht_mWSDeZfJYY7s0o_jdrmlnoyOH0yyOlPatOH4nzX2ejTphhaS2CSUyEn9ON_6DptcpzibSmmlKaSTdT5jnI5lZJ9u3-GgNk2ZbZNmZempo0Pf2fY88_VTMD7HbAuY8p7nUqQ013CfgNvpplv</recordid><startdate>20210914</startdate><enddate>20210914</enddate><creator>Ding, Pengfei</creator><creator>Kharytonchyk, Siarhei</creator><creator>Kuo, Nansen</creator><creator>Cannistraci, Emily</creator><creator>Flores, Hana</creator><creator>Chaudhary, Ridhi</creator><creator>Sarkar, Mitali</creator><creator>Dong, Xinmei</creator><creator>Telesnitsky, Alice</creator><creator>Summers, Michael F.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1824-724X</orcidid><orcidid>https://orcid.org/0000-0001-9878-5931</orcidid><orcidid>https://orcid.org/0000-0003-4267-4380</orcidid><orcidid>https://orcid.org/0000-0003-0387-6342</orcidid><orcidid>https://orcid.org/0000-0003-1064-2704</orcidid></search><sort><creationdate>20210914</creationdate><title>5′-Cap sequestration is an essential determinant of HIV-1 genome packaging</title><author>Ding, Pengfei ; Kharytonchyk, Siarhei ; Kuo, Nansen ; Cannistraci, Emily ; Flores, Hana ; Chaudhary, Ridhi ; Sarkar, Mitali ; Dong, Xinmei ; Telesnitsky, Alice ; Summers, Michael F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-722cc9aec6701fc18227be603dad660c16ed73c86627f6b821c3d50d9d6b16653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>5' Untranslated Regions - genetics</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Encapsidation</topic><topic>Gag protein</topic><topic>Genome, Viral</topic><topic>Genomes</topic><topic>gRNA</topic><topic>HEK293 Cells</topic><topic>HIV</topic><topic>HIV Infections - virology</topic><topic>HIV-1 - genetics</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleocapsids</topic><topic>Packaging</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Caps - chemistry</topic><topic>RNA Caps - genetics</topic><topic>RNA Caps - metabolism</topic><topic>RNA processing</topic><topic>RNA viruses</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - genetics</topic><topic>RNA, Viral - metabolism</topic><topic>Virion - physiology</topic><topic>Virus Assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Pengfei</creatorcontrib><creatorcontrib>Kharytonchyk, Siarhei</creatorcontrib><creatorcontrib>Kuo, Nansen</creatorcontrib><creatorcontrib>Cannistraci, Emily</creatorcontrib><creatorcontrib>Flores, Hana</creatorcontrib><creatorcontrib>Chaudhary, Ridhi</creatorcontrib><creatorcontrib>Sarkar, Mitali</creatorcontrib><creatorcontrib>Dong, Xinmei</creatorcontrib><creatorcontrib>Telesnitsky, Alice</creatorcontrib><creatorcontrib>Summers, Michael F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Pengfei</au><au>Kharytonchyk, Siarhei</au><au>Kuo, Nansen</au><au>Cannistraci, Emily</au><au>Flores, Hana</au><au>Chaudhary, Ridhi</au><au>Sarkar, Mitali</au><au>Dong, Xinmei</au><au>Telesnitsky, Alice</au><au>Summers, Michael F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>5′-Cap sequestration is an essential determinant of HIV-1 genome packaging</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-09-14</date><risdate>2021</risdate><volume>118</volume><issue>37</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>HIV-1 selectively packages two copies of its 5′-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5′ leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5′ leader. ΨCES lacks a 5′-tandem hairpin element that sequesters the 5′ cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5′ ribozyme to ΨCES to enable cotranscriptional shedding of the 5′ cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5′ cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5′-capped RNA genomes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34493679</pmid><doi>10.1073/pnas.2112475118</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1824-724X</orcidid><orcidid>https://orcid.org/0000-0001-9878-5931</orcidid><orcidid>https://orcid.org/0000-0003-4267-4380</orcidid><orcidid>https://orcid.org/0000-0003-0387-6342</orcidid><orcidid>https://orcid.org/0000-0003-1064-2704</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (37), p.1-8
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449379
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 5' Untranslated Regions - genetics
Binding sites
Biological Sciences
Dimerization
Dimers
Encapsidation
Gag protein
Genome, Viral
Genomes
gRNA
HEK293 Cells
HIV
HIV Infections - virology
HIV-1 - genetics
Human immunodeficiency virus
Humans
Mutation
Nucleic Acid Conformation
Nucleocapsids
Packaging
Ribonucleic acid
RNA
RNA Caps - chemistry
RNA Caps - genetics
RNA Caps - metabolism
RNA processing
RNA viruses
RNA, Viral - chemistry
RNA, Viral - genetics
RNA, Viral - metabolism
Virion - physiology
Virus Assembly
title 5′-Cap sequestration is an essential determinant of HIV-1 genome packaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=5%E2%80%B2-Cap%20sequestration%20is%20an%20essential%20determinant%20of%20HIV-1%20genome%20packaging&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ding,%20Pengfei&rft.date=2021-09-14&rft.volume=118&rft.issue=37&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2112475118&rft_dat=%3Cjstor_pubme%3E27075731%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573889273&rft_id=info:pmid/34493679&rft_jstor_id=27075731&rfr_iscdi=true