5′-Cap sequestration is an essential determinant of HIV-1 genome packaging
HIV-1 selectively packages two copies of its 5′-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5′ leader of the viral RNA. Although residues within the leader that pr...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-09, Vol.118 (37), p.1-8 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 37 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Ding, Pengfei Kharytonchyk, Siarhei Kuo, Nansen Cannistraci, Emily Flores, Hana Chaudhary, Ridhi Sarkar, Mitali Dong, Xinmei Telesnitsky, Alice Summers, Michael F. |
description | HIV-1 selectively packages two copies of its 5′-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5′ leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5′ leader. ΨCES lacks a 5′-tandem hairpin element that sequesters the 5′ cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5′ ribozyme to ΨCES to enable cotranscriptional shedding of the 5′ cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5′ cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5′-capped RNA genomes. |
doi_str_mv | 10.1073/pnas.2112475118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075731</jstor_id><sourcerecordid>27075731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-722cc9aec6701fc18227be603dad660c16ed73c86627f6b821c3d50d9d6b16653</originalsourceid><addsrcrecordid>eNpdkb1uFDEUhS1ERDaBOhXIEk2aSa5_xj8NEloFEmmlNCSt5fV4Nl5m7MGeRaLLM-WR8iTMsskGqG5xvnvuPToInRA4IyDZ-RBtOaOEUC5rQtQrNCOgSSW4htdoBkBlpTjlh-iolDUA6FrBG3TIONdMSD1Di_rx_qGa2wEX_2Pjy5jtGFLEoWAbsS_FxzHYDjd-9LkP0cYRpxZfXt1WBK98TL3Hg3Xf7SrE1Vt00Nqu-HdP8xjdfLn4Nr-sFtdfr-afF5XjnI2VpNQ5bb0TEkjriKJULr0A1thGCHBE-EYyp4SgshVLRYljTQ2NbsSSCFGzY_Rp5ztslr1v3PRjtp0Zcuht_mWSDeZfJYY7s0o_jdrmlnoyOH0yyOlPatOH4nzX2ejTphhaS2CSUyEn9ON_6DptcpzibSmmlKaSTdT5jnI5lZJ9u3-GgNk2ZbZNmZempo0Pf2fY88_VTMD7HbAuY8p7nUqQ013CfgNvpplv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573889273</pqid></control><display><type>article</type><title>5′-Cap sequestration is an essential determinant of HIV-1 genome packaging</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ding, Pengfei ; Kharytonchyk, Siarhei ; Kuo, Nansen ; Cannistraci, Emily ; Flores, Hana ; Chaudhary, Ridhi ; Sarkar, Mitali ; Dong, Xinmei ; Telesnitsky, Alice ; Summers, Michael F.</creator><creatorcontrib>Ding, Pengfei ; Kharytonchyk, Siarhei ; Kuo, Nansen ; Cannistraci, Emily ; Flores, Hana ; Chaudhary, Ridhi ; Sarkar, Mitali ; Dong, Xinmei ; Telesnitsky, Alice ; Summers, Michael F.</creatorcontrib><description>HIV-1 selectively packages two copies of its 5′-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5′ leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5′ leader. ΨCES lacks a 5′-tandem hairpin element that sequesters the 5′ cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5′ ribozyme to ΨCES to enable cotranscriptional shedding of the 5′ cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5′ cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5′-capped RNA genomes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2112475118</identifier><identifier>PMID: 34493679</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>5' Untranslated Regions - genetics ; Binding sites ; Biological Sciences ; Dimerization ; Dimers ; Encapsidation ; Gag protein ; Genome, Viral ; Genomes ; gRNA ; HEK293 Cells ; HIV ; HIV Infections - virology ; HIV-1 - genetics ; Human immunodeficiency virus ; Humans ; Mutation ; Nucleic Acid Conformation ; Nucleocapsids ; Packaging ; Ribonucleic acid ; RNA ; RNA Caps - chemistry ; RNA Caps - genetics ; RNA Caps - metabolism ; RNA processing ; RNA viruses ; RNA, Viral - chemistry ; RNA, Viral - genetics ; RNA, Viral - metabolism ; Virion - physiology ; Virus Assembly</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (37), p.1-8</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Sep 14, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-722cc9aec6701fc18227be603dad660c16ed73c86627f6b821c3d50d9d6b16653</citedby><cites>FETCH-LOGICAL-c443t-722cc9aec6701fc18227be603dad660c16ed73c86627f6b821c3d50d9d6b16653</cites><orcidid>0000-0003-1824-724X ; 0000-0001-9878-5931 ; 0000-0003-4267-4380 ; 0000-0003-0387-6342 ; 0000-0003-1064-2704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075731$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075731$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34493679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Pengfei</creatorcontrib><creatorcontrib>Kharytonchyk, Siarhei</creatorcontrib><creatorcontrib>Kuo, Nansen</creatorcontrib><creatorcontrib>Cannistraci, Emily</creatorcontrib><creatorcontrib>Flores, Hana</creatorcontrib><creatorcontrib>Chaudhary, Ridhi</creatorcontrib><creatorcontrib>Sarkar, Mitali</creatorcontrib><creatorcontrib>Dong, Xinmei</creatorcontrib><creatorcontrib>Telesnitsky, Alice</creatorcontrib><creatorcontrib>Summers, Michael F.</creatorcontrib><title>5′-Cap sequestration is an essential determinant of HIV-1 genome packaging</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>HIV-1 selectively packages two copies of its 5′-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5′ leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5′ leader. ΨCES lacks a 5′-tandem hairpin element that sequesters the 5′ cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5′ ribozyme to ΨCES to enable cotranscriptional shedding of the 5′ cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5′ cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5′-capped RNA genomes.</description><subject>5' Untranslated Regions - genetics</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Encapsidation</subject><subject>Gag protein</subject><subject>Genome, Viral</subject><subject>Genomes</subject><subject>gRNA</subject><subject>HEK293 Cells</subject><subject>HIV</subject><subject>HIV Infections - virology</subject><subject>HIV-1 - genetics</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleocapsids</subject><subject>Packaging</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Caps - chemistry</subject><subject>RNA Caps - genetics</subject><subject>RNA Caps - metabolism</subject><subject>RNA processing</subject><subject>RNA viruses</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - genetics</subject><subject>RNA, Viral - metabolism</subject><subject>Virion - physiology</subject><subject>Virus Assembly</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkb1uFDEUhS1ERDaBOhXIEk2aSa5_xj8NEloFEmmlNCSt5fV4Nl5m7MGeRaLLM-WR8iTMsskGqG5xvnvuPToInRA4IyDZ-RBtOaOEUC5rQtQrNCOgSSW4htdoBkBlpTjlh-iolDUA6FrBG3TIONdMSD1Di_rx_qGa2wEX_2Pjy5jtGFLEoWAbsS_FxzHYDjd-9LkP0cYRpxZfXt1WBK98TL3Hg3Xf7SrE1Vt00Nqu-HdP8xjdfLn4Nr-sFtdfr-afF5XjnI2VpNQ5bb0TEkjriKJULr0A1thGCHBE-EYyp4SgshVLRYljTQ2NbsSSCFGzY_Rp5ztslr1v3PRjtp0Zcuht_mWSDeZfJYY7s0o_jdrmlnoyOH0yyOlPatOH4nzX2ejTphhaS2CSUyEn9ON_6DptcpzibSmmlKaSTdT5jnI5lZJ9u3-GgNk2ZbZNmZempo0Pf2fY88_VTMD7HbAuY8p7nUqQ013CfgNvpplv</recordid><startdate>20210914</startdate><enddate>20210914</enddate><creator>Ding, Pengfei</creator><creator>Kharytonchyk, Siarhei</creator><creator>Kuo, Nansen</creator><creator>Cannistraci, Emily</creator><creator>Flores, Hana</creator><creator>Chaudhary, Ridhi</creator><creator>Sarkar, Mitali</creator><creator>Dong, Xinmei</creator><creator>Telesnitsky, Alice</creator><creator>Summers, Michael F.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1824-724X</orcidid><orcidid>https://orcid.org/0000-0001-9878-5931</orcidid><orcidid>https://orcid.org/0000-0003-4267-4380</orcidid><orcidid>https://orcid.org/0000-0003-0387-6342</orcidid><orcidid>https://orcid.org/0000-0003-1064-2704</orcidid></search><sort><creationdate>20210914</creationdate><title>5′-Cap sequestration is an essential determinant of HIV-1 genome packaging</title><author>Ding, Pengfei ; Kharytonchyk, Siarhei ; Kuo, Nansen ; Cannistraci, Emily ; Flores, Hana ; Chaudhary, Ridhi ; Sarkar, Mitali ; Dong, Xinmei ; Telesnitsky, Alice ; Summers, Michael F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-722cc9aec6701fc18227be603dad660c16ed73c86627f6b821c3d50d9d6b16653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>5' Untranslated Regions - genetics</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Encapsidation</topic><topic>Gag protein</topic><topic>Genome, Viral</topic><topic>Genomes</topic><topic>gRNA</topic><topic>HEK293 Cells</topic><topic>HIV</topic><topic>HIV Infections - virology</topic><topic>HIV-1 - genetics</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleocapsids</topic><topic>Packaging</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Caps - chemistry</topic><topic>RNA Caps - genetics</topic><topic>RNA Caps - metabolism</topic><topic>RNA processing</topic><topic>RNA viruses</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - genetics</topic><topic>RNA, Viral - metabolism</topic><topic>Virion - physiology</topic><topic>Virus Assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Pengfei</creatorcontrib><creatorcontrib>Kharytonchyk, Siarhei</creatorcontrib><creatorcontrib>Kuo, Nansen</creatorcontrib><creatorcontrib>Cannistraci, Emily</creatorcontrib><creatorcontrib>Flores, Hana</creatorcontrib><creatorcontrib>Chaudhary, Ridhi</creatorcontrib><creatorcontrib>Sarkar, Mitali</creatorcontrib><creatorcontrib>Dong, Xinmei</creatorcontrib><creatorcontrib>Telesnitsky, Alice</creatorcontrib><creatorcontrib>Summers, Michael F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Pengfei</au><au>Kharytonchyk, Siarhei</au><au>Kuo, Nansen</au><au>Cannistraci, Emily</au><au>Flores, Hana</au><au>Chaudhary, Ridhi</au><au>Sarkar, Mitali</au><au>Dong, Xinmei</au><au>Telesnitsky, Alice</au><au>Summers, Michael F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>5′-Cap sequestration is an essential determinant of HIV-1 genome packaging</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-09-14</date><risdate>2021</risdate><volume>118</volume><issue>37</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>HIV-1 selectively packages two copies of its 5′-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5′ leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5′ leader. ΨCES lacks a 5′-tandem hairpin element that sequesters the 5′ cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5′ ribozyme to ΨCES to enable cotranscriptional shedding of the 5′ cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5′ cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5′-capped RNA genomes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34493679</pmid><doi>10.1073/pnas.2112475118</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1824-724X</orcidid><orcidid>https://orcid.org/0000-0001-9878-5931</orcidid><orcidid>https://orcid.org/0000-0003-4267-4380</orcidid><orcidid>https://orcid.org/0000-0003-0387-6342</orcidid><orcidid>https://orcid.org/0000-0003-1064-2704</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (37), p.1-8 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449379 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 5' Untranslated Regions - genetics Binding sites Biological Sciences Dimerization Dimers Encapsidation Gag protein Genome, Viral Genomes gRNA HEK293 Cells HIV HIV Infections - virology HIV-1 - genetics Human immunodeficiency virus Humans Mutation Nucleic Acid Conformation Nucleocapsids Packaging Ribonucleic acid RNA RNA Caps - chemistry RNA Caps - genetics RNA Caps - metabolism RNA processing RNA viruses RNA, Viral - chemistry RNA, Viral - genetics RNA, Viral - metabolism Virion - physiology Virus Assembly |
title | 5′-Cap sequestration is an essential determinant of HIV-1 genome packaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=5%E2%80%B2-Cap%20sequestration%20is%20an%20essential%20determinant%20of%20HIV-1%20genome%20packaging&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ding,%20Pengfei&rft.date=2021-09-14&rft.volume=118&rft.issue=37&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2112475118&rft_dat=%3Cjstor_pubme%3E27075731%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573889273&rft_id=info:pmid/34493679&rft_jstor_id=27075731&rfr_iscdi=true |