Structural analysis of receptors and actin polarity in platelet protrusions

During activation the platelet cytoskeleton is reorganized, inducing adhesion to the extracellular matrix and cell spreading. These processes are critical for wound healing and clot formation. Initially, this task relies on the formation of strong cellular–extracellular matrix interactions, exposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-09, Vol.118 (37), p.1-8
Hauptverfasser: Sorrentino, Simona, Conesa, Jose Javier, Cuervo, Ana, Melero, Roberto, Martins, Bruno, Fernandez-Gimenez, Estrella, P. de Isidro-Gomez, Federico, de la Morena, Jimenez, Studt, Jan-Dirk, Sorzano, Carlos Oscar S., Eibauer, Matthias, Carazo, Jose Maria, Medalia, Ohad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 37
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Sorrentino, Simona
Conesa, Jose Javier
Cuervo, Ana
Melero, Roberto
Martins, Bruno
Fernandez-Gimenez, Estrella
P. de Isidro-Gomez, Federico
de la Morena, Jimenez
Studt, Jan-Dirk
Sorzano, Carlos Oscar S.
Eibauer, Matthias
Carazo, Jose Maria
Medalia, Ohad
description During activation the platelet cytoskeleton is reorganized, inducing adhesion to the extracellular matrix and cell spreading. These processes are critical for wound healing and clot formation. Initially, this task relies on the formation of strong cellular–extracellular matrix interactions, exposed in subendothelial lesions. Despite the medical relevance of these processes, there is a lack of high-resolution structural information on the platelet cytoskeleton controlling cell spreading and adhesion. Here, we present in situ structural analysis of membrane receptors and the underlying cytoskeleton in platelet protrusions by applying cryoelectron tomography to intact platelets. We utilized three-dimensional averaging procedures to study receptors at the plasma membrane. Analysis of substrate interaction-free receptors yielded one main structural class resolved to 26 Å, resembling the αIIbβ₃ integrin folded conformation. Furthermore, structural analysis of the actin network in pseudopodia indicates a nonuniform polarity of filaments. This organization would allow generation of the contractile forces required for integrin-mediated cell adhesion.
doi_str_mv 10.1073/pnas.2105004118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075745</jstor_id><sourcerecordid>27075745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4248-d75244897534490f22f9f4cedad8e470f0451589cbac5a09de80125aad4995b33</originalsourceid><addsrcrecordid>eNpdkc1PAyEQxYnR2Fo9e9Js4sXL2oGFAhcTY_yKJh7UM6Esq9tslxVYk_73UlvrxwnC_HjzZh5ChxjOMPBi3LU6nBEMDIBiLLbQEIPE-YRK2EZDAMJzQQkdoL0QZgAgmYBdNCgoAwpYDNH9U_S9ib3XTaZb3SxCHTJXZd4a20XnQ3otM21i3Wada7Sv4yJb3hsdbWNj1nmXFELt2rCPdirdBHuwPkfo5frq-fI2f3i8ubu8eMhNsiLykjNCqZCcFTT5rAipZEWNLXUpLOVQAWWYCWmm2jANsrQCMGFal1RKNi2KETpf6Xb9dG5LY9uY7KvO13PtF8rpWv2ttPWbenUfSqR-xYQkgdO1gHfvvQ1RzetgbNPo1ro-KMI4lskj4ISe_ENnrvdpUV9UISRMQCZqvKKMdyF4W23MYFDLoNQyKPUTVPpx_HuGDf-dTAKOVsAspBg2dcKBM05Z8QlScZlm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573890609</pqid></control><display><type>article</type><title>Structural analysis of receptors and actin polarity in platelet protrusions</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sorrentino, Simona ; Conesa, Jose Javier ; Cuervo, Ana ; Melero, Roberto ; Martins, Bruno ; Fernandez-Gimenez, Estrella ; P. de Isidro-Gomez, Federico ; de la Morena, Jimenez ; Studt, Jan-Dirk ; Sorzano, Carlos Oscar S. ; Eibauer, Matthias ; Carazo, Jose Maria ; Medalia, Ohad</creator><creatorcontrib>Sorrentino, Simona ; Conesa, Jose Javier ; Cuervo, Ana ; Melero, Roberto ; Martins, Bruno ; Fernandez-Gimenez, Estrella ; P. de Isidro-Gomez, Federico ; de la Morena, Jimenez ; Studt, Jan-Dirk ; Sorzano, Carlos Oscar S. ; Eibauer, Matthias ; Carazo, Jose Maria ; Medalia, Ohad</creatorcontrib><description>During activation the platelet cytoskeleton is reorganized, inducing adhesion to the extracellular matrix and cell spreading. These processes are critical for wound healing and clot formation. Initially, this task relies on the formation of strong cellular–extracellular matrix interactions, exposed in subendothelial lesions. Despite the medical relevance of these processes, there is a lack of high-resolution structural information on the platelet cytoskeleton controlling cell spreading and adhesion. Here, we present in situ structural analysis of membrane receptors and the underlying cytoskeleton in platelet protrusions by applying cryoelectron tomography to intact platelets. We utilized three-dimensional averaging procedures to study receptors at the plasma membrane. Analysis of substrate interaction-free receptors yielded one main structural class resolved to 26 Å, resembling the αIIbβ₃ integrin folded conformation. Furthermore, structural analysis of the actin network in pseudopodia indicates a nonuniform polarity of filaments. This organization would allow generation of the contractile forces required for integrin-mediated cell adhesion.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2105004118</identifier><identifier>PMID: 34504018</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actin ; Actin Cytoskeleton ; Actins - chemistry ; Actins - metabolism ; Adhesion ; Biological Sciences ; Blood Platelets - physiology ; Cell Adhesion ; Cell Membrane - metabolism ; Cell spreading ; Cell Surface Extensions - physiology ; Conformation ; Contractility ; Cytoskeleton ; Extracellular matrix ; Filaments ; Humans ; Membranes ; Platelet Activation ; Platelet Glycoprotein GPIIb-IIIa Complex - chemistry ; Platelet Glycoprotein GPIIb-IIIa Complex - metabolism ; Platelets ; Polarity ; Pseudopodia ; Receptors ; Structural analysis ; Substrates ; Wound healing</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (37), p.1-8</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Sep 14, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4248-d75244897534490f22f9f4cedad8e470f0451589cbac5a09de80125aad4995b33</citedby><cites>FETCH-LOGICAL-c4248-d75244897534490f22f9f4cedad8e470f0451589cbac5a09de80125aad4995b33</cites><orcidid>0000-0003-0788-8447 ; 0000-0003-2289-2364 ; 0000-0001-9414-503X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075745$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075745$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34504018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sorrentino, Simona</creatorcontrib><creatorcontrib>Conesa, Jose Javier</creatorcontrib><creatorcontrib>Cuervo, Ana</creatorcontrib><creatorcontrib>Melero, Roberto</creatorcontrib><creatorcontrib>Martins, Bruno</creatorcontrib><creatorcontrib>Fernandez-Gimenez, Estrella</creatorcontrib><creatorcontrib>P. de Isidro-Gomez, Federico</creatorcontrib><creatorcontrib>de la Morena, Jimenez</creatorcontrib><creatorcontrib>Studt, Jan-Dirk</creatorcontrib><creatorcontrib>Sorzano, Carlos Oscar S.</creatorcontrib><creatorcontrib>Eibauer, Matthias</creatorcontrib><creatorcontrib>Carazo, Jose Maria</creatorcontrib><creatorcontrib>Medalia, Ohad</creatorcontrib><title>Structural analysis of receptors and actin polarity in platelet protrusions</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>During activation the platelet cytoskeleton is reorganized, inducing adhesion to the extracellular matrix and cell spreading. These processes are critical for wound healing and clot formation. Initially, this task relies on the formation of strong cellular–extracellular matrix interactions, exposed in subendothelial lesions. Despite the medical relevance of these processes, there is a lack of high-resolution structural information on the platelet cytoskeleton controlling cell spreading and adhesion. Here, we present in situ structural analysis of membrane receptors and the underlying cytoskeleton in platelet protrusions by applying cryoelectron tomography to intact platelets. We utilized three-dimensional averaging procedures to study receptors at the plasma membrane. Analysis of substrate interaction-free receptors yielded one main structural class resolved to 26 Å, resembling the αIIbβ₃ integrin folded conformation. Furthermore, structural analysis of the actin network in pseudopodia indicates a nonuniform polarity of filaments. This organization would allow generation of the contractile forces required for integrin-mediated cell adhesion.</description><subject>Actin</subject><subject>Actin Cytoskeleton</subject><subject>Actins - chemistry</subject><subject>Actins - metabolism</subject><subject>Adhesion</subject><subject>Biological Sciences</subject><subject>Blood Platelets - physiology</subject><subject>Cell Adhesion</subject><subject>Cell Membrane - metabolism</subject><subject>Cell spreading</subject><subject>Cell Surface Extensions - physiology</subject><subject>Conformation</subject><subject>Contractility</subject><subject>Cytoskeleton</subject><subject>Extracellular matrix</subject><subject>Filaments</subject><subject>Humans</subject><subject>Membranes</subject><subject>Platelet Activation</subject><subject>Platelet Glycoprotein GPIIb-IIIa Complex - chemistry</subject><subject>Platelet Glycoprotein GPIIb-IIIa Complex - metabolism</subject><subject>Platelets</subject><subject>Polarity</subject><subject>Pseudopodia</subject><subject>Receptors</subject><subject>Structural analysis</subject><subject>Substrates</subject><subject>Wound healing</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1PAyEQxYnR2Fo9e9Js4sXL2oGFAhcTY_yKJh7UM6Esq9tslxVYk_73UlvrxwnC_HjzZh5ChxjOMPBi3LU6nBEMDIBiLLbQEIPE-YRK2EZDAMJzQQkdoL0QZgAgmYBdNCgoAwpYDNH9U_S9ib3XTaZb3SxCHTJXZd4a20XnQ3otM21i3Wada7Sv4yJb3hsdbWNj1nmXFELt2rCPdirdBHuwPkfo5frq-fI2f3i8ubu8eMhNsiLykjNCqZCcFTT5rAipZEWNLXUpLOVQAWWYCWmm2jANsrQCMGFal1RKNi2KETpf6Xb9dG5LY9uY7KvO13PtF8rpWv2ttPWbenUfSqR-xYQkgdO1gHfvvQ1RzetgbNPo1ro-KMI4lskj4ISe_ENnrvdpUV9UISRMQCZqvKKMdyF4W23MYFDLoNQyKPUTVPpx_HuGDf-dTAKOVsAspBg2dcKBM05Z8QlScZlm</recordid><startdate>20210914</startdate><enddate>20210914</enddate><creator>Sorrentino, Simona</creator><creator>Conesa, Jose Javier</creator><creator>Cuervo, Ana</creator><creator>Melero, Roberto</creator><creator>Martins, Bruno</creator><creator>Fernandez-Gimenez, Estrella</creator><creator>P. de Isidro-Gomez, Federico</creator><creator>de la Morena, Jimenez</creator><creator>Studt, Jan-Dirk</creator><creator>Sorzano, Carlos Oscar S.</creator><creator>Eibauer, Matthias</creator><creator>Carazo, Jose Maria</creator><creator>Medalia, Ohad</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0788-8447</orcidid><orcidid>https://orcid.org/0000-0003-2289-2364</orcidid><orcidid>https://orcid.org/0000-0001-9414-503X</orcidid></search><sort><creationdate>20210914</creationdate><title>Structural analysis of receptors and actin polarity in platelet protrusions</title><author>Sorrentino, Simona ; Conesa, Jose Javier ; Cuervo, Ana ; Melero, Roberto ; Martins, Bruno ; Fernandez-Gimenez, Estrella ; P. de Isidro-Gomez, Federico ; de la Morena, Jimenez ; Studt, Jan-Dirk ; Sorzano, Carlos Oscar S. ; Eibauer, Matthias ; Carazo, Jose Maria ; Medalia, Ohad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4248-d75244897534490f22f9f4cedad8e470f0451589cbac5a09de80125aad4995b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actin</topic><topic>Actin Cytoskeleton</topic><topic>Actins - chemistry</topic><topic>Actins - metabolism</topic><topic>Adhesion</topic><topic>Biological Sciences</topic><topic>Blood Platelets - physiology</topic><topic>Cell Adhesion</topic><topic>Cell Membrane - metabolism</topic><topic>Cell spreading</topic><topic>Cell Surface Extensions - physiology</topic><topic>Conformation</topic><topic>Contractility</topic><topic>Cytoskeleton</topic><topic>Extracellular matrix</topic><topic>Filaments</topic><topic>Humans</topic><topic>Membranes</topic><topic>Platelet Activation</topic><topic>Platelet Glycoprotein GPIIb-IIIa Complex - chemistry</topic><topic>Platelet Glycoprotein GPIIb-IIIa Complex - metabolism</topic><topic>Platelets</topic><topic>Polarity</topic><topic>Pseudopodia</topic><topic>Receptors</topic><topic>Structural analysis</topic><topic>Substrates</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorrentino, Simona</creatorcontrib><creatorcontrib>Conesa, Jose Javier</creatorcontrib><creatorcontrib>Cuervo, Ana</creatorcontrib><creatorcontrib>Melero, Roberto</creatorcontrib><creatorcontrib>Martins, Bruno</creatorcontrib><creatorcontrib>Fernandez-Gimenez, Estrella</creatorcontrib><creatorcontrib>P. de Isidro-Gomez, Federico</creatorcontrib><creatorcontrib>de la Morena, Jimenez</creatorcontrib><creatorcontrib>Studt, Jan-Dirk</creatorcontrib><creatorcontrib>Sorzano, Carlos Oscar S.</creatorcontrib><creatorcontrib>Eibauer, Matthias</creatorcontrib><creatorcontrib>Carazo, Jose Maria</creatorcontrib><creatorcontrib>Medalia, Ohad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorrentino, Simona</au><au>Conesa, Jose Javier</au><au>Cuervo, Ana</au><au>Melero, Roberto</au><au>Martins, Bruno</au><au>Fernandez-Gimenez, Estrella</au><au>P. de Isidro-Gomez, Federico</au><au>de la Morena, Jimenez</au><au>Studt, Jan-Dirk</au><au>Sorzano, Carlos Oscar S.</au><au>Eibauer, Matthias</au><au>Carazo, Jose Maria</au><au>Medalia, Ohad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural analysis of receptors and actin polarity in platelet protrusions</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-09-14</date><risdate>2021</risdate><volume>118</volume><issue>37</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>During activation the platelet cytoskeleton is reorganized, inducing adhesion to the extracellular matrix and cell spreading. These processes are critical for wound healing and clot formation. Initially, this task relies on the formation of strong cellular–extracellular matrix interactions, exposed in subendothelial lesions. Despite the medical relevance of these processes, there is a lack of high-resolution structural information on the platelet cytoskeleton controlling cell spreading and adhesion. Here, we present in situ structural analysis of membrane receptors and the underlying cytoskeleton in platelet protrusions by applying cryoelectron tomography to intact platelets. We utilized three-dimensional averaging procedures to study receptors at the plasma membrane. Analysis of substrate interaction-free receptors yielded one main structural class resolved to 26 Å, resembling the αIIbβ₃ integrin folded conformation. Furthermore, structural analysis of the actin network in pseudopodia indicates a nonuniform polarity of filaments. This organization would allow generation of the contractile forces required for integrin-mediated cell adhesion.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34504018</pmid><doi>10.1073/pnas.2105004118</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0788-8447</orcidid><orcidid>https://orcid.org/0000-0003-2289-2364</orcidid><orcidid>https://orcid.org/0000-0001-9414-503X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (37), p.1-8
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449362
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Actin
Actin Cytoskeleton
Actins - chemistry
Actins - metabolism
Adhesion
Biological Sciences
Blood Platelets - physiology
Cell Adhesion
Cell Membrane - metabolism
Cell spreading
Cell Surface Extensions - physiology
Conformation
Contractility
Cytoskeleton
Extracellular matrix
Filaments
Humans
Membranes
Platelet Activation
Platelet Glycoprotein GPIIb-IIIa Complex - chemistry
Platelet Glycoprotein GPIIb-IIIa Complex - metabolism
Platelets
Polarity
Pseudopodia
Receptors
Structural analysis
Substrates
Wound healing
title Structural analysis of receptors and actin polarity in platelet protrusions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20analysis%20of%20receptors%20and%20actin%20polarity%20in%20platelet%20protrusions&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sorrentino,%20Simona&rft.date=2021-09-14&rft.volume=118&rft.issue=37&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2105004118&rft_dat=%3Cjstor_pubme%3E27075745%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573890609&rft_id=info:pmid/34504018&rft_jstor_id=27075745&rfr_iscdi=true