FGF-2–dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis

Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-09, Vol.118 (37), p.1-12
Hauptverfasser: Mathes, Sebastian, Fahrner, Alexandra, Ghoshdastider, Umesh, Rüdiger, Hannes A., Leunig, Michael, Wolfrum, Christian, Krützfeldt, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 37
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Mathes, Sebastian
Fahrner, Alexandra
Ghoshdastider, Umesh
Rüdiger, Hannes A.
Leunig, Michael
Wolfrum, Christian
Krützfeldt, Jan
description Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus–mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus
doi_str_mv 10.1073/pnas.2021013118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075763</jstor_id><sourcerecordid>27075763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-78315cadf2c46a34faf9ab10c70a7c966054f889ac6a6b4979aef46bf5211d6f3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EosvCmRMoEhcuaccfseMLUlWxBakSFzhbs46TeknsYCeVuPEf-If8EhK2LB-nkWaeeTXzvoQ8p3BOQfGLMWA-Z8AoUE5p_YBsKGhaSqHhIdkAMFXWgokz8iTnAwDoqobH5IwLobkUakO63fWuZD--fW_c6ELjwlRk3wXsfegKtJO_w8k1hQ8Fdku9nQcMRf7sejdhXwxztr0rxhSHOLm8YFPCtTn3mAps_Bg7F1z2-Sl51GKf3bP7uiWfdm8_Xr0rbz5cv7-6vCltBXoqVc1pZbFpmRUSuWix1binYBWgslpKqERb1xqtRLkXWml0rZD7tmKUNrLlW_LmqDvO-8E11q0X9WZMfsD01UT05t9J8Lemi3emXi1hsAi8vhdI8cvs8mQGn63rewwuztmwSgFXgi3ub8mr_9BDnNPi3S-K1xo08IW6OFI2xZyTa0_HUDBriGYN0fwJcdl4-fcPJ_53agvw4ggc8hTTac4UqEpJzn8CaEWlUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573890903</pqid></control><display><type>article</type><title>FGF-2–dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mathes, Sebastian ; Fahrner, Alexandra ; Ghoshdastider, Umesh ; Rüdiger, Hannes A. ; Leunig, Michael ; Wolfrum, Christian ; Krützfeldt, Jan</creator><creatorcontrib>Mathes, Sebastian ; Fahrner, Alexandra ; Ghoshdastider, Umesh ; Rüdiger, Hannes A. ; Leunig, Michael ; Wolfrum, Christian ; Krützfeldt, Jan</creatorcontrib><description>Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus–mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged &gt;75 y versus &lt;55 y showed activation of FGF-2–dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2021013118</identifier><identifier>PMID: 34493647</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adipocytes ; Adipogenesis ; Adipose tissue ; Adipose Tissue - metabolism ; Adipose Tissue - pathology ; Aged ; Bioaccumulation ; Biological Sciences ; Cell Differentiation ; Evolutionary conservation ; Fibroblast growth factor 2 ; Fibroblast Growth Factor 2 - genetics ; Fibroblast Growth Factor 2 - metabolism ; Fra1 protein ; Growth factors ; Humans ; MicroRNAs - genetics ; miRNA ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscles ; Musculoskeletal system ; Osteonectin ; Osteonectin - genetics ; Osteonectin - metabolism ; Progenitor cells ; Proto-Oncogene Proteins c-fos - genetics ; Proto-Oncogene Proteins c-fos - metabolism ; Ribonucleic acid ; RNA ; Signal Transduction ; Signaling ; Skeletal muscle ; Transcription activation ; Transcription factors ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (37), p.1-12</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Sep 14, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-78315cadf2c46a34faf9ab10c70a7c966054f889ac6a6b4979aef46bf5211d6f3</citedby><cites>FETCH-LOGICAL-c509t-78315cadf2c46a34faf9ab10c70a7c966054f889ac6a6b4979aef46bf5211d6f3</cites><orcidid>0000-0001-7071-7128 ; 0000-0002-7967-0909 ; 0000-0003-1305-0982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075763$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075763$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34493647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathes, Sebastian</creatorcontrib><creatorcontrib>Fahrner, Alexandra</creatorcontrib><creatorcontrib>Ghoshdastider, Umesh</creatorcontrib><creatorcontrib>Rüdiger, Hannes A.</creatorcontrib><creatorcontrib>Leunig, Michael</creatorcontrib><creatorcontrib>Wolfrum, Christian</creatorcontrib><creatorcontrib>Krützfeldt, Jan</creatorcontrib><title>FGF-2–dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus–mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged &gt;75 y versus &lt;55 y showed activation of FGF-2–dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.</description><subject>Adipocytes</subject><subject>Adipogenesis</subject><subject>Adipose tissue</subject><subject>Adipose Tissue - metabolism</subject><subject>Adipose Tissue - pathology</subject><subject>Aged</subject><subject>Bioaccumulation</subject><subject>Biological Sciences</subject><subject>Cell Differentiation</subject><subject>Evolutionary conservation</subject><subject>Fibroblast growth factor 2</subject><subject>Fibroblast Growth Factor 2 - genetics</subject><subject>Fibroblast Growth Factor 2 - metabolism</subject><subject>Fra1 protein</subject><subject>Growth factors</subject><subject>Humans</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Osteonectin</subject><subject>Osteonectin - genetics</subject><subject>Osteonectin - metabolism</subject><subject>Progenitor cells</subject><subject>Proto-Oncogene Proteins c-fos - genetics</subject><subject>Proto-Oncogene Proteins c-fos - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Skeletal muscle</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EosvCmRMoEhcuaccfseMLUlWxBakSFzhbs46TeknsYCeVuPEf-If8EhK2LB-nkWaeeTXzvoQ8p3BOQfGLMWA-Z8AoUE5p_YBsKGhaSqHhIdkAMFXWgokz8iTnAwDoqobH5IwLobkUakO63fWuZD--fW_c6ELjwlRk3wXsfegKtJO_w8k1hQ8Fdku9nQcMRf7sejdhXwxztr0rxhSHOLm8YFPCtTn3mAps_Bg7F1z2-Sl51GKf3bP7uiWfdm8_Xr0rbz5cv7-6vCltBXoqVc1pZbFpmRUSuWix1binYBWgslpKqERb1xqtRLkXWml0rZD7tmKUNrLlW_LmqDvO-8E11q0X9WZMfsD01UT05t9J8Lemi3emXi1hsAi8vhdI8cvs8mQGn63rewwuztmwSgFXgi3ub8mr_9BDnNPi3S-K1xo08IW6OFI2xZyTa0_HUDBriGYN0fwJcdl4-fcPJ_53agvw4ggc8hTTac4UqEpJzn8CaEWlUg</recordid><startdate>20210914</startdate><enddate>20210914</enddate><creator>Mathes, Sebastian</creator><creator>Fahrner, Alexandra</creator><creator>Ghoshdastider, Umesh</creator><creator>Rüdiger, Hannes A.</creator><creator>Leunig, Michael</creator><creator>Wolfrum, Christian</creator><creator>Krützfeldt, Jan</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7071-7128</orcidid><orcidid>https://orcid.org/0000-0002-7967-0909</orcidid><orcidid>https://orcid.org/0000-0003-1305-0982</orcidid></search><sort><creationdate>20210914</creationdate><title>FGF-2–dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis</title><author>Mathes, Sebastian ; Fahrner, Alexandra ; Ghoshdastider, Umesh ; Rüdiger, Hannes A. ; Leunig, Michael ; Wolfrum, Christian ; Krützfeldt, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-78315cadf2c46a34faf9ab10c70a7c966054f889ac6a6b4979aef46bf5211d6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adipocytes</topic><topic>Adipogenesis</topic><topic>Adipose tissue</topic><topic>Adipose Tissue - metabolism</topic><topic>Adipose Tissue - pathology</topic><topic>Aged</topic><topic>Bioaccumulation</topic><topic>Biological Sciences</topic><topic>Cell Differentiation</topic><topic>Evolutionary conservation</topic><topic>Fibroblast growth factor 2</topic><topic>Fibroblast Growth Factor 2 - genetics</topic><topic>Fibroblast Growth Factor 2 - metabolism</topic><topic>Fra1 protein</topic><topic>Growth factors</topic><topic>Humans</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Osteonectin</topic><topic>Osteonectin - genetics</topic><topic>Osteonectin - metabolism</topic><topic>Progenitor cells</topic><topic>Proto-Oncogene Proteins c-fos - genetics</topic><topic>Proto-Oncogene Proteins c-fos - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Skeletal muscle</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathes, Sebastian</creatorcontrib><creatorcontrib>Fahrner, Alexandra</creatorcontrib><creatorcontrib>Ghoshdastider, Umesh</creatorcontrib><creatorcontrib>Rüdiger, Hannes A.</creatorcontrib><creatorcontrib>Leunig, Michael</creatorcontrib><creatorcontrib>Wolfrum, Christian</creatorcontrib><creatorcontrib>Krützfeldt, Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathes, Sebastian</au><au>Fahrner, Alexandra</au><au>Ghoshdastider, Umesh</au><au>Rüdiger, Hannes A.</au><au>Leunig, Michael</au><au>Wolfrum, Christian</au><au>Krützfeldt, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FGF-2–dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-09-14</date><risdate>2021</risdate><volume>118</volume><issue>37</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus–mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged &gt;75 y versus &lt;55 y showed activation of FGF-2–dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34493647</pmid><doi>10.1073/pnas.2021013118</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7071-7128</orcidid><orcidid>https://orcid.org/0000-0002-7967-0909</orcidid><orcidid>https://orcid.org/0000-0003-1305-0982</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (37), p.1-12
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449320
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adipocytes
Adipogenesis
Adipose tissue
Adipose Tissue - metabolism
Adipose Tissue - pathology
Aged
Bioaccumulation
Biological Sciences
Cell Differentiation
Evolutionary conservation
Fibroblast growth factor 2
Fibroblast Growth Factor 2 - genetics
Fibroblast Growth Factor 2 - metabolism
Fra1 protein
Growth factors
Humans
MicroRNAs - genetics
miRNA
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Muscles
Musculoskeletal system
Osteonectin
Osteonectin - genetics
Osteonectin - metabolism
Progenitor cells
Proto-Oncogene Proteins c-fos - genetics
Proto-Oncogene Proteins c-fos - metabolism
Ribonucleic acid
RNA
Signal Transduction
Signaling
Skeletal muscle
Transcription activation
Transcription factors
Viruses
title FGF-2–dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FGF-2%E2%80%93dependent%20signaling%20activated%20in%20aged%20human%20skeletal%20muscle%20promotes%20intramuscular%20adipogenesis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mathes,%20Sebastian&rft.date=2021-09-14&rft.volume=118&rft.issue=37&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2021013118&rft_dat=%3Cjstor_pubme%3E27075763%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573890903&rft_id=info:pmid/34493647&rft_jstor_id=27075763&rfr_iscdi=true