A model integrating Killer Immunoglobulin-like Receptor (KIR) haplotypes for risk prediction of COVID-19 clinical disease severity

Associations between inherited Killer Immunoglobulin-like Receptor (KIR) genotypes and the severity of multiple RNA virus infections have been reported. This prospective study was initiated to investigate if such an association exists for COVID-19. In this cohort study performed at Ankara University...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunogenetics (New York) 2021-12, Vol.73 (6), p.449-458
Hauptverfasser: Beksac, Meral, Akin, Hasan Yalim, Gencer-Oncul, Emine Begum, Yousefzadeh, Mahsa, Cengiz Seval, Guldane, Gulten, Ezgi, Akdemir Kalkan, Irem, Cinar, Gule, Memikoglu, Osman, Karaagaoglu, Ergun, Dalva, Klara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 458
container_issue 6
container_start_page 449
container_title Immunogenetics (New York)
container_volume 73
creator Beksac, Meral
Akin, Hasan Yalim
Gencer-Oncul, Emine Begum
Yousefzadeh, Mahsa
Cengiz Seval, Guldane
Gulten, Ezgi
Akdemir Kalkan, Irem
Cinar, Gule
Memikoglu, Osman
Karaagaoglu, Ergun
Dalva, Klara
description Associations between inherited Killer Immunoglobulin-like Receptor (KIR) genotypes and the severity of multiple RNA virus infections have been reported. This prospective study was initiated to investigate if such an association exists for COVID-19. In this cohort study performed at Ankara University, 132 COVID-19 patients (56 asymptomatic, 51 mild-intermediate, and 25 patients with severe disease) were genotyped for KIR and ligands. Ankara University Donor Registry (n:449) KIR data was used for comparison. Clinical parameters (age, gender, comorbidities, blood group antigens, inflammation biomarkers) and KIR genotypes across cohorts of asymptomatic, mild-intermediate, or severe disease were compared to construct a risk prediction model based on multivariate binary logistic regression analysis with backward elimination method. Age, blood group, number of comorbidities, CRP, D-dimer, and telomeric and centromeric KIR genotypes (tAA, tAB1, and cAB1) along with their cognate ligands were found to differ between cohorts. Two prediction models were constructed; both included age, number of comorbidities, and blood group. Inclusion of the KIR genotypes in the second prediction model exp (-3.52 + 1.56 age group - 2.74 blood group (type A vs others) + 1.26 number of comorbidities - 2.46 tAB1 with ligand + 3.17 tAA with ligand) increased the predictive performance with a 92.9% correct classification for asymptomatic and 76% for severe cases (AUC: 0.93; P  
doi_str_mv 10.1007/s00251-021-01227-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574399112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-7ddb32d0b9f182966bd5b18d2b22a992e42932c3de8e6f20d5343a615bd3b1a13</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMo9nr1D7gKuKmL0Zwk85GNUK5flxYKRd2GzOTMNG1mMiYzhbv1l5t6i6ILF-FAzvM-JLyEvAT2Bhir3ybGeAkF4_kA53UhH5ENSMEL4ACPyYYxJYq6Bjghz1K6YQxKxaun5ETIUlSsqTbkxxkdg0VP3bTgEM3ipoGeO-8x0v04rlMYfGhX76bCu1ukV9jhvIRIT8_3V6_ptZl9WA4zJtrny-jSLZ0jWtctLkw09HR3-W3_vgBFu-xwnfHUuoQmIU14h9Eth-fkSW98whcPc0u-fvzwZfe5uLj8tN-dXRSdLGEpamtbwS1rVQ8NV1XV2rKFxvKWc6MUR8mV4J2w2GDVc2ZLIYWpoGytaMGA2JJ3R--8tiPaDqclGq_n6EYTDzoYp__eTO5aD-FON1IqDiILTh8EMXxfMS16dKlD782EYU2al7UUSgHwjL76B70Ja5zy9zKlRC1rmYvaEn6kuhhSitj_fgwwfV-xPlasc8X6V8X6PiSOoZThacD4R_2f1E9RkKjL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593747414</pqid></control><display><type>article</type><title>A model integrating Killer Immunoglobulin-like Receptor (KIR) haplotypes for risk prediction of COVID-19 clinical disease severity</title><source>Springer Nature - Complete Springer Journals</source><creator>Beksac, Meral ; Akin, Hasan Yalim ; Gencer-Oncul, Emine Begum ; Yousefzadeh, Mahsa ; Cengiz Seval, Guldane ; Gulten, Ezgi ; Akdemir Kalkan, Irem ; Cinar, Gule ; Memikoglu, Osman ; Karaagaoglu, Ergun ; Dalva, Klara</creator><creatorcontrib>Beksac, Meral ; Akin, Hasan Yalim ; Gencer-Oncul, Emine Begum ; Yousefzadeh, Mahsa ; Cengiz Seval, Guldane ; Gulten, Ezgi ; Akdemir Kalkan, Irem ; Cinar, Gule ; Memikoglu, Osman ; Karaagaoglu, Ergun ; Dalva, Klara</creatorcontrib><description>Associations between inherited Killer Immunoglobulin-like Receptor (KIR) genotypes and the severity of multiple RNA virus infections have been reported. This prospective study was initiated to investigate if such an association exists for COVID-19. In this cohort study performed at Ankara University, 132 COVID-19 patients (56 asymptomatic, 51 mild-intermediate, and 25 patients with severe disease) were genotyped for KIR and ligands. Ankara University Donor Registry (n:449) KIR data was used for comparison. Clinical parameters (age, gender, comorbidities, blood group antigens, inflammation biomarkers) and KIR genotypes across cohorts of asymptomatic, mild-intermediate, or severe disease were compared to construct a risk prediction model based on multivariate binary logistic regression analysis with backward elimination method. Age, blood group, number of comorbidities, CRP, D-dimer, and telomeric and centromeric KIR genotypes (tAA, tAB1, and cAB1) along with their cognate ligands were found to differ between cohorts. Two prediction models were constructed; both included age, number of comorbidities, and blood group. Inclusion of the KIR genotypes in the second prediction model exp (-3.52 + 1.56 age group - 2.74 blood group (type A vs others) + 1.26 number of comorbidities - 2.46 tAB1 with ligand + 3.17 tAA with ligand) increased the predictive performance with a 92.9% correct classification for asymptomatic and 76% for severe cases (AUC: 0.93; P  &lt; 0.0001, 95% CI 0.88, 0.99). This novel risk model, consisting of KIR genotypes with their cognate ligands, and clinical parameters but excluding earlier published inflammation-related biomarkers allow for the prediction of the severity of COVID-19 infection prior to the onset of infection. This study is listed in the National COVID-19 clinical research studies database. Graphical abstract</description><identifier>ISSN: 0093-7711</identifier><identifier>EISSN: 1432-1211</identifier><identifier>DOI: 10.1007/s00251-021-01227-4</identifier><identifier>PMID: 34536086</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Age ; Allergology ; Antigens ; Asymptomatic ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Blood groups ; Cell Biology ; Coronaviruses ; COVID-19 ; Dimers ; Gene Function ; Genotypes ; Haplotypes ; Human Genetics ; Immunoglobulins ; Immunology ; Inflammation ; Ligands ; Mathematical models ; Original ; Original Article ; Parameters ; Patients ; Performance prediction ; Prediction models ; Receptors ; Regression analysis ; Risk ; RNA viruses ; Viral diseases</subject><ispartof>Immunogenetics (New York), 2021-12, Vol.73 (6), p.449-458</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-7ddb32d0b9f182966bd5b18d2b22a992e42932c3de8e6f20d5343a615bd3b1a13</citedby><cites>FETCH-LOGICAL-c451t-7ddb32d0b9f182966bd5b18d2b22a992e42932c3de8e6f20d5343a615bd3b1a13</cites><orcidid>0000-0001-9433-2054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00251-021-01227-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00251-021-01227-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Beksac, Meral</creatorcontrib><creatorcontrib>Akin, Hasan Yalim</creatorcontrib><creatorcontrib>Gencer-Oncul, Emine Begum</creatorcontrib><creatorcontrib>Yousefzadeh, Mahsa</creatorcontrib><creatorcontrib>Cengiz Seval, Guldane</creatorcontrib><creatorcontrib>Gulten, Ezgi</creatorcontrib><creatorcontrib>Akdemir Kalkan, Irem</creatorcontrib><creatorcontrib>Cinar, Gule</creatorcontrib><creatorcontrib>Memikoglu, Osman</creatorcontrib><creatorcontrib>Karaagaoglu, Ergun</creatorcontrib><creatorcontrib>Dalva, Klara</creatorcontrib><title>A model integrating Killer Immunoglobulin-like Receptor (KIR) haplotypes for risk prediction of COVID-19 clinical disease severity</title><title>Immunogenetics (New York)</title><addtitle>Immunogenetics</addtitle><description>Associations between inherited Killer Immunoglobulin-like Receptor (KIR) genotypes and the severity of multiple RNA virus infections have been reported. This prospective study was initiated to investigate if such an association exists for COVID-19. In this cohort study performed at Ankara University, 132 COVID-19 patients (56 asymptomatic, 51 mild-intermediate, and 25 patients with severe disease) were genotyped for KIR and ligands. Ankara University Donor Registry (n:449) KIR data was used for comparison. Clinical parameters (age, gender, comorbidities, blood group antigens, inflammation biomarkers) and KIR genotypes across cohorts of asymptomatic, mild-intermediate, or severe disease were compared to construct a risk prediction model based on multivariate binary logistic regression analysis with backward elimination method. Age, blood group, number of comorbidities, CRP, D-dimer, and telomeric and centromeric KIR genotypes (tAA, tAB1, and cAB1) along with their cognate ligands were found to differ between cohorts. Two prediction models were constructed; both included age, number of comorbidities, and blood group. Inclusion of the KIR genotypes in the second prediction model exp (-3.52 + 1.56 age group - 2.74 blood group (type A vs others) + 1.26 number of comorbidities - 2.46 tAB1 with ligand + 3.17 tAA with ligand) increased the predictive performance with a 92.9% correct classification for asymptomatic and 76% for severe cases (AUC: 0.93; P  &lt; 0.0001, 95% CI 0.88, 0.99). This novel risk model, consisting of KIR genotypes with their cognate ligands, and clinical parameters but excluding earlier published inflammation-related biomarkers allow for the prediction of the severity of COVID-19 infection prior to the onset of infection. This study is listed in the National COVID-19 clinical research studies database. Graphical abstract</description><subject>Age</subject><subject>Allergology</subject><subject>Antigens</subject><subject>Asymptomatic</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood groups</subject><subject>Cell Biology</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Dimers</subject><subject>Gene Function</subject><subject>Genotypes</subject><subject>Haplotypes</subject><subject>Human Genetics</subject><subject>Immunoglobulins</subject><subject>Immunology</subject><subject>Inflammation</subject><subject>Ligands</subject><subject>Mathematical models</subject><subject>Original</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Patients</subject><subject>Performance prediction</subject><subject>Prediction models</subject><subject>Receptors</subject><subject>Regression analysis</subject><subject>Risk</subject><subject>RNA viruses</subject><subject>Viral diseases</subject><issn>0093-7711</issn><issn>1432-1211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1rFTEUhoMo9nr1D7gKuKmL0Zwk85GNUK5flxYKRd2GzOTMNG1mMiYzhbv1l5t6i6ILF-FAzvM-JLyEvAT2Bhir3ybGeAkF4_kA53UhH5ENSMEL4ACPyYYxJYq6Bjghz1K6YQxKxaun5ETIUlSsqTbkxxkdg0VP3bTgEM3ipoGeO-8x0v04rlMYfGhX76bCu1ukV9jhvIRIT8_3V6_ptZl9WA4zJtrny-jSLZ0jWtctLkw09HR3-W3_vgBFu-xwnfHUuoQmIU14h9Eth-fkSW98whcPc0u-fvzwZfe5uLj8tN-dXRSdLGEpamtbwS1rVQ8NV1XV2rKFxvKWc6MUR8mV4J2w2GDVc2ZLIYWpoGytaMGA2JJ3R--8tiPaDqclGq_n6EYTDzoYp__eTO5aD-FON1IqDiILTh8EMXxfMS16dKlD782EYU2al7UUSgHwjL76B70Ja5zy9zKlRC1rmYvaEn6kuhhSitj_fgwwfV-xPlasc8X6V8X6PiSOoZThacD4R_2f1E9RkKjL</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Beksac, Meral</creator><creator>Akin, Hasan Yalim</creator><creator>Gencer-Oncul, Emine Begum</creator><creator>Yousefzadeh, Mahsa</creator><creator>Cengiz Seval, Guldane</creator><creator>Gulten, Ezgi</creator><creator>Akdemir Kalkan, Irem</creator><creator>Cinar, Gule</creator><creator>Memikoglu, Osman</creator><creator>Karaagaoglu, Ergun</creator><creator>Dalva, Klara</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9433-2054</orcidid></search><sort><creationdate>20211201</creationdate><title>A model integrating Killer Immunoglobulin-like Receptor (KIR) haplotypes for risk prediction of COVID-19 clinical disease severity</title><author>Beksac, Meral ; Akin, Hasan Yalim ; Gencer-Oncul, Emine Begum ; Yousefzadeh, Mahsa ; Cengiz Seval, Guldane ; Gulten, Ezgi ; Akdemir Kalkan, Irem ; Cinar, Gule ; Memikoglu, Osman ; Karaagaoglu, Ergun ; Dalva, Klara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-7ddb32d0b9f182966bd5b18d2b22a992e42932c3de8e6f20d5343a615bd3b1a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Allergology</topic><topic>Antigens</topic><topic>Asymptomatic</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood groups</topic><topic>Cell Biology</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Dimers</topic><topic>Gene Function</topic><topic>Genotypes</topic><topic>Haplotypes</topic><topic>Human Genetics</topic><topic>Immunoglobulins</topic><topic>Immunology</topic><topic>Inflammation</topic><topic>Ligands</topic><topic>Mathematical models</topic><topic>Original</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Patients</topic><topic>Performance prediction</topic><topic>Prediction models</topic><topic>Receptors</topic><topic>Regression analysis</topic><topic>Risk</topic><topic>RNA viruses</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beksac, Meral</creatorcontrib><creatorcontrib>Akin, Hasan Yalim</creatorcontrib><creatorcontrib>Gencer-Oncul, Emine Begum</creatorcontrib><creatorcontrib>Yousefzadeh, Mahsa</creatorcontrib><creatorcontrib>Cengiz Seval, Guldane</creatorcontrib><creatorcontrib>Gulten, Ezgi</creatorcontrib><creatorcontrib>Akdemir Kalkan, Irem</creatorcontrib><creatorcontrib>Cinar, Gule</creatorcontrib><creatorcontrib>Memikoglu, Osman</creatorcontrib><creatorcontrib>Karaagaoglu, Ergun</creatorcontrib><creatorcontrib>Dalva, Klara</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunogenetics (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beksac, Meral</au><au>Akin, Hasan Yalim</au><au>Gencer-Oncul, Emine Begum</au><au>Yousefzadeh, Mahsa</au><au>Cengiz Seval, Guldane</au><au>Gulten, Ezgi</au><au>Akdemir Kalkan, Irem</au><au>Cinar, Gule</au><au>Memikoglu, Osman</au><au>Karaagaoglu, Ergun</au><au>Dalva, Klara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model integrating Killer Immunoglobulin-like Receptor (KIR) haplotypes for risk prediction of COVID-19 clinical disease severity</atitle><jtitle>Immunogenetics (New York)</jtitle><stitle>Immunogenetics</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>73</volume><issue>6</issue><spage>449</spage><epage>458</epage><pages>449-458</pages><issn>0093-7711</issn><eissn>1432-1211</eissn><abstract>Associations between inherited Killer Immunoglobulin-like Receptor (KIR) genotypes and the severity of multiple RNA virus infections have been reported. This prospective study was initiated to investigate if such an association exists for COVID-19. In this cohort study performed at Ankara University, 132 COVID-19 patients (56 asymptomatic, 51 mild-intermediate, and 25 patients with severe disease) were genotyped for KIR and ligands. Ankara University Donor Registry (n:449) KIR data was used for comparison. Clinical parameters (age, gender, comorbidities, blood group antigens, inflammation biomarkers) and KIR genotypes across cohorts of asymptomatic, mild-intermediate, or severe disease were compared to construct a risk prediction model based on multivariate binary logistic regression analysis with backward elimination method. Age, blood group, number of comorbidities, CRP, D-dimer, and telomeric and centromeric KIR genotypes (tAA, tAB1, and cAB1) along with their cognate ligands were found to differ between cohorts. Two prediction models were constructed; both included age, number of comorbidities, and blood group. Inclusion of the KIR genotypes in the second prediction model exp (-3.52 + 1.56 age group - 2.74 blood group (type A vs others) + 1.26 number of comorbidities - 2.46 tAB1 with ligand + 3.17 tAA with ligand) increased the predictive performance with a 92.9% correct classification for asymptomatic and 76% for severe cases (AUC: 0.93; P  &lt; 0.0001, 95% CI 0.88, 0.99). This novel risk model, consisting of KIR genotypes with their cognate ligands, and clinical parameters but excluding earlier published inflammation-related biomarkers allow for the prediction of the severity of COVID-19 infection prior to the onset of infection. This study is listed in the National COVID-19 clinical research studies database. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34536086</pmid><doi>10.1007/s00251-021-01227-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9433-2054</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0093-7711
ispartof Immunogenetics (New York), 2021-12, Vol.73 (6), p.449-458
issn 0093-7711
1432-1211
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449213
source Springer Nature - Complete Springer Journals
subjects Age
Allergology
Antigens
Asymptomatic
Biomarkers
Biomedical and Life Sciences
Biomedicine
Blood groups
Cell Biology
Coronaviruses
COVID-19
Dimers
Gene Function
Genotypes
Haplotypes
Human Genetics
Immunoglobulins
Immunology
Inflammation
Ligands
Mathematical models
Original
Original Article
Parameters
Patients
Performance prediction
Prediction models
Receptors
Regression analysis
Risk
RNA viruses
Viral diseases
title A model integrating Killer Immunoglobulin-like Receptor (KIR) haplotypes for risk prediction of COVID-19 clinical disease severity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20integrating%20Killer%20Immunoglobulin-like%20Receptor%20(KIR)%20haplotypes%20for%20risk%20prediction%20of%20COVID-19%20clinical%20disease%20severity&rft.jtitle=Immunogenetics%20(New%20York)&rft.au=Beksac,%20Meral&rft.date=2021-12-01&rft.volume=73&rft.issue=6&rft.spage=449&rft.epage=458&rft.pages=449-458&rft.issn=0093-7711&rft.eissn=1432-1211&rft_id=info:doi/10.1007/s00251-021-01227-4&rft_dat=%3Cproquest_pubme%3E2574399112%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593747414&rft_id=info:pmid/34536086&rfr_iscdi=true